No. 165 ARIZONA-NASA ATLAS OF THE INFRARED SOLAR SPECTRUM, REPORT IX

by L. A. BIJL, G. P. KUIPER AND D. P. CRUIKSHANK

August 25, 1969

ABSTRACT

In this paper we give the solar spectrum $\lambda\lambda$ 25583-30920 Å as obtained from the NASA CV-990 Jet. A laboratory spectrum of the 2.7 μ H₂O bands is included; Courtoy's laboratory spectrum of the 2.7 μ CO₂ bands is given.

In the summer of 1968 two LPL spectrometers recorded the solar spectrum from the NASA CV 990 Jet at high altitude. This paper concludes the preliminary reports on the solar spectrum as obtained with the LPL 4-m spectrometer. Previous reports were published as *Comm. LPL* Nos. 123, 124, 160, 161, 163, 164. The present report gives the solar spectrum $\lambda\lambda$ 25583-30920 Å; in a great part of the interval duplicate runs were available. The observing data are listed in Table I, pp. 142–43.

The wavelength scale is based on the wavelengths of water vapor lines as given by Plyler and Tidwell (1957) and by Gates *et al.* (1964); the wavelengths of CO_2 lines as given by Courtoy (1959); the wavelengths of N₂O as given by Tidwell, Plyler and Benedict (1960). For the conversion of wavenumbers to wavelengths, Coleman's *Table of Wavenumbers* (NBS 1960) was used. Inaccuracy in the wavelength scale is caused by a periodic and a small random error in the dispersion, and by small inconsistencies in the above mentioned sources of wavelengths. The wavelength scale of Figs. 18-20 (Charts 67-69) had to be interpolated between the few water vapor absorptions, of which the wavelengths were taken from Gates et al. (1964).* The positions of solar CO lines were calculated from the constants given by Goldberg and Müller (1953). The CO lines are indicated with an asterisk above the spectral traces. Atmospheric absorptions by H₂O, N₂O, and CO_2 are indicated by a dot, the symbol \diamondsuit , and a vertical line, respectively, all above the spectral trace. We tried to separate the several CO_2 bands in this region by placing the vertical lines at different levels and giving them a different appearance. In doing this we consulted Courtoy's spectrum of CO₂, herein reproduced in Figs. 29 and 30.

Several runs of the water vapor spectrum at 2.7 μ were made, with different amounts of gas. In Figs. 21–28 we reproduce a spectrum with medium-strong absorptions. It shows the weak lines while the strong lines are saturated and their fine structure is not visible, contrary to the solar spectra. Some unidentified lines in the solar spectra may still be telluric.

^{*}Identification of solar lines on these charts were obtained from Migeotte, et al (1956).

The solar spectra were obtained in the NASA CV-990 by Messrs. Kuiper and Cruikshank. The derivation of the wavelength scale and the identifications were all performed by Mr. Bijl, who also obtained the laboratory spectra of the 2.7 μ H₂O bands and prepared the charts for publication.

Acknowledgments — We wish to thank Messrs. J. Percy, B. McClendon, A. Thomson and Rev. G. Sill of LPL and Mr. D. Olsen of NASA-Ames for their assistance during the flights. Mr. D. C. Benner constructed the wavelength scales for the laboratory spectra and assisted in the calculation of the CO line positions. Mrs. A. P. Agnieray and Mr. S. M. Larson assisted in the preparation of the figures. This research was supported by NASA through Grant NsG 161-61 and the University of Arizona Institutional Grant NGR-03-002-091.

REFERENCES

- Coleman, C. D., Bozman, W. R., and Meggers, W. F. 1960, *Table of Wavenumbers, Vol. II, 7000* Å to 1000 μ , NBS Mono. 3 (Washington, D.C.: NBS).
- Courtoy, C. P. 1959, "Spectre Infrarouge à Grande Dispersion et Constantes Moleculaires du CO₂," *Ann. Soc. Sci. Bruxelles*, Séries I, Tome 73, pp. 5–230.
- Gates, D. M., Calfee, R. F., Hansen, D. W., and Benedict, W. S. 1964, *Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ*, NBS Mono. 71 (Washington, D.C.: NBS).
- Goldberg, L., and Müller, E. A. 1953, "Carbon Monoxide in the Sun," *Ap. J.*, 118, pp. 397–411.
- Migeotte, M., Neven, L., and Swensson, J. 1956, "The Solar Spectrum from 2.8 to 23.7 Microns, Part I, Photometric Atlas," *Mem. Soc. Roy. Sci. Liège*, Special Vol. 1.
- Migeotte, M., Neven, L. and Swensson, J. 1957, "The Solar Spectrum from 2.8 to 23.7 Microns, Part II, Measures and Identifications," *Mem. Soc. Roy. Sci. Liège*, Special Vol. 2.
- Plyler, E. K. and Tidwell, E. D. 1957, "The Precise Measurement of the Infrared Spectra of Molecules of the Atmosphere," *Mém. Soc. Roy. Sci. Liège*, 4th Series, 18, pp. 426–449.
- Tidwell, E. D., Plyler, E. K., and Benedict, W. S. 1960, "Vibration-Rotation Bands of N₂O," *J. Opt. Soc. Am.*, **50**, pp. 1243–1263.

INFRARED SOLAR SPECTRUM

Ξ

INFRARED SOLAR SPECTRUM

*

÷

٠

¢

≘ •• -

¢

¢

-*

¢

٠

-+

۰

L. A. BIJL, G. P. KUIPER, AND D. P. CRUIKSHANK

-	¢
LT.	1
E	
A	
F	٩.

SOLAR SPECTRUM RECORDS, 4-m SPECTROMETER, NASA CV-900 JET GRATING 600 1/mm: GRATING BLAZE, JULY 19: 1.6 μ , JULY 30, AUG. 1: 2.5 μ FILTER 1.8 μ ; DETECTOR 0.10 mm

(sec.) 0.12 0.12 $\begin{array}{c} 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \end{array}$ 0.12 0.12 0.12 0.12 0.12 $\begin{array}{c}
0.12 \\
0.12 \\
0.12 \\
0.12
\end{array}$ $\begin{array}{c} 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \end{array}$ $0.12 \\ 0.12 \\$ 0.12 0.12 0.12 0.12 0.12 $\begin{array}{c}
0.12 \\
0.12 \\
0.12 \\
0.12
\end{array}$ 0.12 0.12 0.12 0.12 0.18/0.15 SLIT (mm) 0.15 0.18 0.15 0.18 0.15 0.18 0.15 0.18 $\begin{array}{c} 0.15 \\ 0.18 \\ 0.15 \\ 0.18 \\ 0.18 \end{array}$ 0.15 0.18 0.15 0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 5-5/5-6 5-6 6-2 GAIN 2222 6262 5.50 5.65 5-6 5-6 5-6 5-20 5-5 8500 8500/8900 CABIN ALT. (FT.) 8900 8500 8900 8500 8500 8500 8500 8500 0068 0068 0068 8900 8500 8900 8500 8900 8500 8900 8500 8900 8900 8900 0068 00068 00068 8900 8900 8900 OUTSIDE TEMP. (°C) -55 -59 -55/ -52 -52 -52/ -55-55-52-55-52-52--55 --52 --52 --59 --55 --59 -60-57-60-58--58 --58 --59 --59 39,000 39,000/40,800 $\begin{array}{c} 41,000\\ 39,000\\ 41,100\\ 39,000\end{array}$ $\begin{array}{c} 41,200\\ 39,000\\ 41,300\\ 39,000\end{array}$ $\begin{array}{c} 41,400\\ 39,000\\ 41,500\\ 39,000\end{array}$ 41,50039,00041,50039,00061,50041,70041,50041,600 $\begin{array}{c} 41,500\\ 41,600\\ 41,500\\ 41,500\end{array}$ $\begin{array}{c} 41,500\\ 41,500\\ 41,500\\ 41,500\end{array}$ $\begin{array}{c} 41,500\\ 41,500\\ 41,500\\ 41,500\end{array}$ ALT. 18:47/19:28 19:29 19:31 19:37 19:04 19:07/18:26 18:35 19:16 18:38 19:19 18:41 19:22 19:25 19:25 19:34 18:55 19:38 18:58 18:29 19:09 18:32 19:12 19:42 19:01 19:45 19:05 19:48 19:08 19:51 19:51 19:57 19:14 20:00 19:17 TU July 19 July 19/30 July 30 July 19 July 30 July 19 1968 DATE July 30 July 19 July 30 30 30 30 30 [uly [uly] July July July uly 25770-25893 25770-25893 25893-26013 25893-26013 26255-26369 26255-26369 26369-26488 26369-26488 26488-26606 26488-26606 26606-26718 26606-26718 26606-26718 26718-26837 26718-26837 26837-26950 26837-26950 26837-26950 26950-27056 26950-27056 27056-27167 27056-27167 27167-27279 27167-27279 27279-27382 27279-27382 27382-27486 27382-27486 27486-27592 27486-27592 26013-26134 26013-26134 26134-26255 26134-26255 26134-26255 25583-25707 25707-25770 CHART 54 a b c d 55a b d d 56a c d d 51 a b c d 50 c d doba dc da dc da dcop 22 53 28 27 FIG. 2 3 4 5 9 8 6

142

L. A. BIJL, G. P. KUIPER, AND D. P. CRUIKSHANK

59 4 с Ъ а	င်းပင်းအ (00 (00 (00)	τ ^α ο Δ ^a 61 9	62 a 62 a d	τ ⁴ υ Α΄ 63 6	64 64 4 6 7 8 9	65 a 65 d [*] c	ต ้ นี้ นี้ ค 90 90	طٍّ رَرِّ فٍ 67 ه	ต่ัง 88 68	طِرْدِ لَمَ 69 9
27592-27692	* 27903-28011	* 28116-28225	* 28331-28435	* 28539-28635	* 28734-28832	* 28927-29022	29120-29206	* 29400-29565	* 29825-29909	* 30366-30510
27692-27796	* 27903-28011	* 28116-28225	* 28331-28435	* 28539-28635	* 28734-28832	* 28927-29022	29120-29265	* 29565-29650	* 29909-30065	* 20510-30652
27796-27903	28011-28116	28225-28331	28435-28539	28635-28734	28832-28927	29022-29120	29265-29400	* 29650-29825	* 30065-30218	* 30652-30789
* 27796-27903	* 28011-28116	* 28225-28331	* 28435-28539	* 28635-28734	* 28832-28927	* 29022-29120	29265-29400	* 29650-29825	* 30218-30366	* 30789-30920
July 30	July 30	July 30	July 30	July 30	July 30	July 30	July 30	Aug. 1	Aug. 1	Aug. 1
July 30	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1
July 30	July 30	July 30	July 30	July 30	July 30	July 30	Aug. 1	Aug. 1	Aug. 1	Aug. 1
Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1	Aug. 1
20:03	20:13	20:20	20:26	20:33	20:40	20:46	20:52	18:50	18:58/19:26	19:37
20:06	18:20	18:24	18:27	18:31	18:34	18:37	18:41	18:53/19:21	19:28	19:40
20:10	20:16	20:23	20:30	20:37	20:43	20:49	18:44	18:55	19:31	19:43
18:19	18:22	18:26	18:29	18:32	18:36	18:39	18:48	19:23	19:34	19:47
41,500	41,500	41,500	41,500	41,500	41,500	41,500	41,500	40,500	41,800/41,500	41,500
41,500	39,000	39,400	39,800	40,200	40,500	40,500	40,500	40,800/41,500	41,500	41,500
41,500	41,500	41,500	41,500	41,500	41,500	41,500	40,300	41,200	41,500	41,500
39,000	39,200	39,600	40,000	40,400	40,500	40,500	40,500	41,500	41,500	41,500
	5 54 58 42		58 58 58 58	1 8585 966 978 978 978 978 978 978 978 978 978 978	1 558 538 538	 555 555 555 555 555 555 555 555 55	1 1 1 553 553	53 58 58 58		9999 1
8900 8900 9300	8900 9300 8900 9300	8900 9300 8900 9300	8900 9300 8900 9300	8900 8300 8900 9300	8900 9300 9300 9300	8900 9300 8900 9300	8900 9300 9300 9300	9300 9300 9300 9300	9300 9300 9300 9300	9300 9300 9300 9300
6-2 6-2 6-1	-7-7- 6-6-6-	-2-2 6666	6-2/6-3 6-1 6-3 6-1	٩٩٩ 	6-3 6-1/6-2 6-3 6-2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6-3 6-2 6-2 6-2/6-3	မှုရှ ့ရှ မမမမမ		
0.15 0.15 0.30 0.30	0.14 0.30/0.24 0.14 0.24	0.14 0.24 0.24 0.24	0.14 0.24 0.14 0.24	0.14 0.24 0.24 0.24	0.24 0.24 0.24	0.14 0.24 0.14 0.24	0.14/0.20 0.24 0.24 0.24	0024 0024 0224	0.24 0.24 0.24/0.38 0.38	0.38 0.38 0.38 0.38
0.12	0.12	0.12	0.12/0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.24	0.24	0.24
0.12	0.12	0.12	0.24	0.24	0.24	0.12	0.12/0.24	0.24	0.24	0.24
0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.24	0.24	0.24	0.24

*Grating turned at double rate.

INFRARED SOLAR SPECTRUM

Fig. 29 Laboratory spectrum of CO_2 by C. P. Courtoy. Scales in wavenumbers. Arrows indicate corresponding parts of solar records. (Reproduced with permission).

Fig. 30 Laboratory spectrum of CO_2 by C. P. Courtoy. Scales in wavenumbers. Arrows indicate corresponding parts of solar records. (Reproduced with permission).

TABLE OF CONTENTS

No. 163	Arizona-NASA Atlas of the Infrared Solar Spectrum, Report VII	65
	by L. A. Bijl, G. P. Kuiper and D. P. Cruikshank	

- No. 165 Arizona-NASA Atlas of the Infrared Solar Spectrum, Report IX 121 by L. A. Bijl, G. P. Kuiper and D. P. Cruikshank

4, 2 - j