No. 131 THE TUCSON SELENODETIC TRIANGULATION

by D. W. G. Arthur^{*} and Patricia Bates

Nov. 5, 1968

ABSTRACT

The Tucson selenodetic triangulation makes use of measures from four sources and provides 1355 coordinated points. The control is derived from a network of 48 points measured on 25 Yerkes star-trailed plates. This work is largely independent of the Franz-Schrutka-Rechtenstamm secondary work which is the basis of all other selenodetic coordinate schemes.

1. Introduction

lmost all selenodetic triangulations derive their A scale and orientation from the eight-point secondary triangulation observed by Franz (1899) in 1890-94 using the Königsberg Heliometer. Franz did not reduce his own measures strictly and the rigorous reductions were performed half a century later by Schrutka-Rechtenstamm (1956). Franz (1901) measured 150 points at Breslau on five Lick plates and these measures have been reduced also by Schrutka-Rechtenstamm (1958) to yield the Breslau selenodetic triangulation. This triangulation can be regarded as a smoothed and amplified version of the Königsberg scheme and has been preferred over the latter in almost every case as the control for modern selenodetic triangulations. Thus the Baldwin (1963), ACIC (Meyer and Ruffin, 1965), Kiev (Gavrilov 1967) and Manchester (Mills 1968) * Is presently at U.S. Geological Survey, Flagstaff, Arizona

triangulations are all linear descendants of the Königsberg scheme in that they derive their scale and orientation from it via the Breslau triangulation. The AMS 1964 triangulation (Breece, Hardy and Marchant) would be completely independent of Franz's work, if performed according to the scheme outlined in AMS Tech. Report No. 29, Part I, but it was not so derived and its real nature is not clear. The Tucson triangulation, treated here, depends on the secondary network of 48 points described in *LPL Comm.* No. 130, and thus takes its orientation from 25 Yerkes star-trailed photographs (see *LPL Comm.* No. 129). The scale is still dependent on the pioneer measures of Franz (1899).

The Tucson triangulation differs from most others in that it combines measures from several different sources. In this respect it resembles the DOD 1966 triangulation (Hathaway, Eigen, and Marchant, 1967) but is computed much more simply. We used the measures by ACIC, by the Kiev group on plates taken at Pulkovo and Golosseyevo, by LPL on plates taken at Yerkes and of the U.S. Naval Observatory, Flagstaff, and by Saunder and his associates on four Paris and two Yerkes plates. We decided against the use of the AMS and Baldwin measures because of certain obscurities in the presentation of the measures. This is not to suggest that there is anything basically unsound about these measures, but merely that time did not allow the investigation of matters which could not be understood at once from the authors' presentations.

Something should be said of the nature of the coordinates determined by a triangulation of the kind described here. Mills (1968) uses the title "absolute lunar coordinates" but without real justification. In the rotation theory it is made quite clear that the xyz axes of that theory are the principal axes of inertia of the moon considered as a rigid body. The origin is the moon's center of mass. In practice this point is not accessible to differential geometric measures and hence the origin is shifted to the so-called center of figure. More important is the consideration that the real origin of the selenodetic rectangular coordinates is the adopted fundamental point, and that the quantities which are really determined are the coordinate steps from this point. All available selenodetic coordinates are thus relative in character.

The degree of correlation in direction between the principal axes of inertia and the actual axes of triangulation depends on the precision of the measures at each stage of the measures, that is, on the precision of I and f in the primary work, on the precision of the secondary measures, and on the precision of the tertiary (photographic) measures of the secondary control points. It must not be assumed of course that the coordinate axes of a triangulation, which have only a statistical existence, coincide absolutely in direction with the principal axes, though the differences cannot exceed one minute of arc and may be much smaller.

The differences of origin are probably much more important as there is now evidence to suggest that the center of figure deviates from the center of mass by amounts of the order of a kilometer in each coordinate direction.

2. The Recovery of the Saunder Measures

The dispersion in the catalogs of Saunder (1904 and 1910) show that the measures are very precise despite their earliness. However, Saunder did not give the actual photographic coordinates (x, y). Instead each plate was reduced separately on the assumption that the lunar surface point is at unit distance from the origin of coordinates. For each set of measures Saunder gave the pair (ξ, η) , corresponding to the central projection of the observed point on a lunar sphere of unit radius. In the second catalog he added the third direction-cosine ζ , computed from the mean ξ and η using the condition

$$\zeta = + \sqrt{(1 - \xi^2 - \eta^2)}.$$

Saunder also gave the topocentric librations (l', b') used by him, but not the augmented semidiameter s'. This must be recovered from the ephemeris. In these recovery calculations it is essential to use the Saunder values for l', b', s', whether these are right or not.

Fortunately it is not really necessary to recover the measured coordinates so long as we can rely on Saunder's refraction corrections. Instead we can limit ourselves to the simpler calculations of the refraction-free coordinates. For these we have the instantaneous direction-cosines (x, y, z) where

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a, b, c \\ e, f, g \\ i, j, k \end{pmatrix} \cdot \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix}.$$
 (1)

The matrix elements $a, b, \ldots k$ are defined in LPL Comm. No. 62. The refraction-free coordinates in units of the moon's radius are then

$$\begin{array}{l} x' = x / (1 - z \sin s') \\ y' = y / (1 - z \sin s') \end{array} \right\} .$$
 (2)

These last are rigorous and differ from the approximate forms used by Saunder, and by Schrutka-Rechtenstamm (1966) in his equations (5). The Schrutka scheme is

$$x' = x + xz \sin s',$$

$$y' = y + yz \sin s',$$

and these are truncations of the developments

$$x' = x + xz \sin s' + xz^2 \sin^2 s' + \dots,$$

$$y' = y + yz \sin s' + yz^2 \sin^2 s' + \dots,$$

of (2). The terms in $\sin^2 s'$ cannot be as large as 0.00002 of the radius and are usually much smaller. Thus the Schrutka-Rechtenstamm approximations are justified, and what is more important here, we are relieved of the necessity of duplicating the exact

steps of Saunder in dealing with the finite distance effects. Hence we adhere to (2) which is covered by a standard subroutine in the *LPL* selenodetic computations.

Some care is required in the case of the two Yerkes photographs. Saunder initially computed s' for the dates and times provisionally assigned to these photographs by Ritchey. These were found to be wrong subsequently, but were nevertheless used by Saunder in the computations of ξ and η . The incorrect values of s' must be used by us in the recovery of the refraction-free coordinates (x', y'). The correct values are then used in the ensuing calculations of the rectangular coordinates (E, F, G).

3. The Standardization of the Measures

The LPL, ACIC, and Kiev measures were available as uncorrected plate coordinates (x, y) and were processed as in Comm. LPL No. 60, using the LPL 48-point secondary net as control to obtain the refraction-free plate coordinates (x'', y'') in millimeters. These were then converted to the same coordinates expressed in units of the moon's radius, and denoted by (x', y').

In the case of the Saunder measures we already had the data in the form of refraction-free values (x', y'), in units of the moon's radius, but these were not properly connected to the *LPL* secondary net, and therefore were not quite in the same systems as the other plates. To bring them into sympathy with the other plate measures they were fastened to our secondary values as follows. For each plate the secondary positions (E, F, G) were processed by

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a, b, c \\ e, f, g \\ i, j, k \end{pmatrix} \cdot \begin{pmatrix} E \\ F \\ G \end{pmatrix}$$
(1a)

and

$$X' = X / (1 - Z \sin s') Y' = Y / (1 - Z \sin s')$$
(2a)

using now the correct value of sin s'. The pairs (X', Y') may be regarded as refraction-free photographic coordinates consistent with the secondary control. It was assumed that these related to the values found from the Saunder measures in (2) by

$$\left.\begin{array}{l}X' = Px' - Qy' + R\\Y' = Py' + Qx' + S\end{array}\right\}$$
(3)

The plate constants P, Q, R, S were found for the Yerkes plates using the LPL secondary points as con-

trols in least squares solutions. Note that P approximates to unity while Q, R and S are almost zero. The transformation (3) was then applied to each Yerkes plate to derive the values (X', Y'), that is, refraction-free coordinates in the required system. However since these are denoted by (x', y') for all other plates, they will be hereafter be denoted by (x', y'). Thus at this point, for all plates, we have the refraction-free coordinates (x', y') in units of the moon's radius. The origin is at the center of face and the y'-axis is directed northwards along the apparent first lunar meridian.

4. The Calculation of the Selenodetic Coordinates (E, F, G)

Let (x_o, y_o) be the observed values of (x', y') derived as above, and let (x_c, y_c) be the computed value, found as follows. Let (E, F, G) be the provisional selenodetic position of the point. Then using (1a) and (2a) we can compute the instantaneous values (X, Y, Z), and then from (2a)

$$x_c = X' = X / (1 - Z \sin s'),$$

 $y_c = Y' = Y / (1 - Z \sin s').$

In general the computed set (x_c, y_c) does not agree with the observed set (x_o, y_o) because of errors in the assumed values (E, F, G). Let $(\delta E, \delta F, \delta G)$ be the set of corrections which must be imposed on (E, F, G) in order to make (x_c, y_c) agree with (x_o, y_o) . Then clearly, to the first order,

$$\frac{\delta x'}{\delta E} \delta E + \frac{\delta x'}{\delta F} \delta F + \frac{\delta x'}{\delta G} \delta G = x_o - x_c, \\ \frac{\delta y'}{\delta E} \delta E + \frac{\delta y'}{\delta F} \delta F + \frac{\delta y'}{\delta G} \delta G = y_o - y_c.$$

But to this same order,

$$x_c = X' \approx aE + bF + cG,$$

$$y_c = Y' \approx eE + fF + gG,$$

so that we have as our first-order observation equations,

$$\begin{array}{l} a\delta E + b\delta F + c\delta G = x_o - x_c \\ e\delta E + f\delta F + g\delta G = y_o - y_c \end{array}$$

$$(4)$$

Because $P \approx 1$, $Q \approx R \approx S \approx O$, (4) holds also for the Saunder plates. Thus there are two observation equations for each plate on which a point is measured. Using all equations for the same point, as measured on *m* plates, we have 2m observation equations leading to a 3 x 3 normal matrix for each point. The opening values (E, F, G) were identified with the direction-cosines (ξ, η, ζ) on any LPL plate on which the point was measured.

The measures were not weighted because of the difficulties of assessing relative precisions of measures from different sources.

The first values of δE , δF , δG were applied to the provisional values E, F, G and the entire computation repeated. The second values of δE and δF were less than 0.00001 in every case so that a third iteration was not really necessary. Nevertheless this was performed to derive residuals for the evaluation of the precisions of the coordinates.

5. The Precision of the Coordinates

The set $(\delta E, \delta F, \delta G)$ for each point was calculated by inversion of the 3 x 3 normal matrices. The elements r_{ik} of the 3 x 3 inverse normal matrices were punched out and used subsequently for the calculation of the standard errors of the rectangular selenodetic coordinates. In the iterative calculations, the first two sets δE , δF , δG were calculated and applied, but in the third iteration the process was arrested and diverted with the calculation of the differences

$$\begin{aligned} \delta x &\equiv x_o - x_c, \\ \delta y &\equiv y_o - y_c. \end{aligned}$$

Since these now lead to corrections δE , δF , δG which were virtually zero, they were to be regarded as residuals. Let σ be the standard error of x and y in units of the moon's radius, then

$$\sigma^2 = \frac{\Sigma(\delta x^2 + \delta y^2)}{2m - 3} \tag{5}$$

In this m is the number of plates on which the point is measured and each summation is for one point over all plates. The standard errors of the rectangular selenodetic coordinates E, F, G are

It may be stated at once that the overall precision of the Tucson Triangulation is a little disappointing considering the precision of Saunder's and the ACIC measures. Frequently points with many measures were poorly determined. This indicates that the various observers did not always measure the same point within a crater.

More serious is the tendency of the dispersion σ to increase towards the limb. This is interpreted

as a systematic trend towards skewing of the perspective rays and can hardly be representative of random errors. Effects of this kind can be introduced by faulty scales and orientation of the plates.

It would be interesting to know whether other triangulations show this effect, but the AMS and DOD triangulations are not computed with independent scales for the plates, so the principal suspect is not present. The ACIC and Manchester triangulations do not evaluate precisions in terms of distances in the photoplanes, nor in terms of the rectangulars E, F, G, which are easily converted to the former, so these cannot be investigated by us for this effect. We suspect however, from the behavior of the heights, that the Manchester triangulation is virtually free of this kind of systematic error. The various major triangulations are still being analyzed for systematic errors by the first author.

6. The Spherical Coordinates

The rectangular coordinates (E, F, G) are connected to the longitude, latitude, and absolute altitude h, by

$$E = (1 + h) \cos \beta \sin \lambda$$

$$F = (1 + h) \sin \beta$$

$$G = (1 + h) \cos \beta \cos \lambda$$
(7)

where h is in units of the moon's radius. In this case, given the rectangulars, h is found from

$$h = +\sqrt{(E^2 + F^2 + G^2) - 1}$$
 (8)

and hence the absolute altitude in kilometers from

$$H = 1738 \cdot 1 h \tag{9}$$

The longitude λ is computed from

$$\tan \lambda = E / G \tag{10}$$

and the latitude β from

$$\sin\beta = F / (1+h) \tag{11}$$

7. The Arrangement of the Catalog

To place the points in a unique sequence they were assigned seven-figure reference numbers derived from their positions on the disk. Each reference has the structure

$Q E_1 F_1 E_2 F_2 E_3 F_3,$

where Q is the number of the quadrant (one to four inclusive) and E_i , F_i are the *i*th digits of the coordi-

nates E and F respectively. The points are listed in order of increasing reference.

Since the seven-figure reference is derived from the coordinates, it is itself redundant and is not given in the catalog. Instead the first column lists the catalog number running from 1 to 1355. It will be noticed that each item occupies two consecutive lines in the catalog.

The first column gives the catalog number, as already noted. The second gives the five-figure reference used in the System of Lunar Craters (Arthur et al, 1963–66). This same numbering system is used with minor changes in the DOD (1966) triangulation, and an asterisk is added to indicate that the point occurs in this triangulation. In the second line, under the five-figure reference, is given the number of the point in Named Lunar Formations (Blagg and Müller, 1935).

The Tucson triangulation was compared also with the Manchester triangulation (Mills, 1968) but common points are so few that it has been preferred to list these separately in Appendix 1. Some of the correlations are doubtful, but a discussion of this is deferred.

The third column gives the designation taken from the System. The fourth, fifth and sixth columns, with headings E, F, G, give the values of the rectangular selenodetic coordinates to five places in units of the moon's mean radius. Underneath each coordinate is given the standard error in units of the fifth place. The seventh and eighth columns give the longitude and latitude respectively in degrees and decimals of a degree. The precisions of these coordinates are not given. The next column gives the absolute altitude H of the point in kilometers above a mean sphere of 1738.1 km radius. Beneath this is a rather rough estimate of the standard height error.

This last requires some explanation. The computer programs were not written to give the standard errors of the spherical coordinates, as these are virtually meaningless unless accompanied by estimates of the very strong covariances. However the standard height error is of some interest to some workers in this field so a rather rough estimate was derived with desk machines using

$$\sigma_H = 1738 \cdot 1 \ G \ \sigma_G, \tag{12}$$

on the assumption that σ_G is much greater than σ_E and σ_F . The estimate in (12) is rather rough but is good enough for purposes of comparison. The last column gives the number of photographs on which the point was measured. Strictly speaking this is the number of epochs on which photographs were obtained and used to derive the present triangulation.

8. The Adjusted Secondary Net

For the secondary points used as controls in the Tucson (tertiary) triangulation there are both secondary and tertiary positions. For optimum estimates of the selenodetic positions of these points both sets of data must be used. The adjusted positions in terms of rectangular coordinates (E, F, G) are derived as weighted means in Appendix 2. Rows (2) and (3) are the secondary and tertiary positions respectively. The next row gives the differences and the last row gives the weighted means. The weights used in the calculations are taken to be the reciprocals of the error-variances. Normal error propagation formulas for linear functions are used to compute the standard errors of the weighted means.

These adjusted values are somewhat more reliable than either the secondary or tertiary coordinates of the secondary points of *LPL Comm.* No. 130.

9. The Data for the Photographs

Appendix 3 lists the dates, times and libration data for the 37 epochs used in the triangulation. Each epoch corresponds to either a single photograph, or to the mean time for a sequence of photographs. In the latter case the separate measures on the individual photographs are meaned to represent measures on a fictitious photograph at mean epoch. The number of photographs in each sequence is stated in the last column under the heading "Ply."

The times for all mean photographs are given as UT, except for the older material measured by Saunder. The times of the four Paris photographs are given as Paris Sideral Time. Those for the two Ritchey photographs are given as Central Standard Time.

The two photographs obtained with the astrographic reflector of the U.S. Naval Observatory, Flagstaff, Arizona, are long exposure plates and are approximately equivalent to the mean of five Pic du Midi exposures in precision.

Acknowledgment. This work was supported by Cambridge Research Laboratories, U.S. Air Force, Contract F19628-67-C-0240.

REFERENCES

- Army Map Service. 1967, "Department of Defense Selenodetic Control System 1966" (Army Map Service).

trailed Photographs," Comm. LPL, 129.

- ——. 1967, "A New Secondary Selenodetic Triangulation," Comm. LPL. 130.
- Baldwin, R. B. 1963, *The Measure of the Moon* (University of Chicago Press), pp. 212-245.
- Blagg, M. and Müller, K. 1935, Named Lunar Formations, (London: International Astronomical Union).
- Franz, J. 1899, "Die Figur des Mondes," Astr. Beob. Konigsberg, Vol. 38.
- Gavrilov, I. V., Duma, A. S. and Kislyuk, V. S. 1967, "Catalogue of Selenocentric Positions of 500 Basic Points on the Moon's Surface" ["Katalog Selenotsentricheskikh Polozhenii 500 Bazisnykh Tochek Na Poverkhnosti Luny"], Figure and Motion of the Moon [Figura I Dvizhenie Luny], ed. by A. A. Yakovkin. (Kiev: Izdatel' Stvo Naukova Dumka), p. 7-55.

- Meyer, D. L. and Ruffin, B. W. 1965, "Coordinates of Lunar Features, Group I and II Solutions," ACIC Tech. Paper No. 15 (Aeronautical Chart and Information Center, U.S. Air Force, St. Louis, Mo.).
- Mills, C. A. 1968, "Absolute Coordinates of Lunar Features, II," *Icarus*, 8, pp. 90-116.
- Saunder, S. A. 1904, "The Determination of Selenographic Positions III — Results of the Measurement of Four Paris Negatives," *Memoirs Royal Astron. Soc.*, Vol. 57, Part I.
- -------. 1910, "The Determination of Selenographic Positions — Results of the Measurement of Two Yerkes Negatives," *Memoirs Royal Astron. Soc.*, Vol. 60.
- Schrutka-Rechtenstamm, G. 1956, "Neureduktion der acht von J. Franz und der vier von F. Hayn gemessenen Mondkraterpositionen," Sitz. Österr. Akad. Wiss. Math. — Naturw. Kl., Abt. II, Vol. 165.

 - 1966, "Messungen von 137 Monkratern an der Universitäts — Sternwarte Wien," Annalen der Universitäts — Sternwarte Wien, Vol. 26, Part 6.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B & M	Designation	E	F	G	Long	Lat	Н	Pl.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	10002*	Bruce	+	+ -02081	+	+	+	.1. 41	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		857		3	3	25			. 43	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		855		5	5	36			. 62	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		865		5	5	39			. 68	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	10045*	Triesnecker J	5	5	37				12
	5		Triesnecker E	. 04344 4	. 09 699 4		2.499	5.560		13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10067	Triesnecker				3. 628	4.204	-0.82	13
8 10093* Rhaeticus A .0904 .03072 .99626 5. 187 1. 758 +1. 44 1. 1.38 9 10102 Pallas N .00867 .12249 .99319 0.500 7.030 +1.31 1. 10 10105 Ukert E .00211 .15608 .98809 0.418 8.976 +0.64 1. 11 10107* Ukert Y .00577 .17599 .98317 0.333 10.142 -209 12 10123 Ukert A .02426 .99106 1.403 7.744 -2.05 .290 13 10125 Ukert A .02340 .99106 1.403 7.744 -2.06 .32 14 10161 Ukert K .06526 .1292 .99217 3.763 6.479 +1.32 .32 15 10179* Hyginus D .07425 .19790 .9777 4.342 11.410 +0.60 .57 16 10183* Hyginus A .09833 .11046 .98939 5.675 6.339 +0.47 .15 1	7	10087	Triesnecker F		. 07200	. 99483	4.816	4.124	+1.65	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	10093*	Rhaeticus A	. 09044		. 99626	5.187	1.758	+1.44	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	10102	Pallas N	_	. 1 2 2 4 9	. 99319	0.500	7.030	+1.31	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10105	Ukert E		. 15608	.98809	0.418	8.976	+0.64	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11		Ukert Y			.98374	0. 333	10.142	-1.09	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12		Ukert	. 02428	.13482	.99106	1.403	7.744	+0.84	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13		Ukert A				1.354	8.729	+2.16	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14		Ukert K	9 . 06526	9 .11292		3. 763	6.479		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		.07425	5 . 19790		4.342	11.410		8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		871		5	5			7.619		18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		869		3	3	26			. 45	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		867		4	4	39			. 67	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		891	Conon	8	7	66			1.06	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	8	8	63			1.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		892		15	15	116			1.89	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21		Aratus A	6	5	49			. 79	6
10 <td>22</td> <td>-</td> <td>(bright spot)</td> <td>.01627</td> <td></td> <td></td> <td>1.068</td> <td>29.230</td> <td></td> <td>11</td>	22	-	(bright spot)	.01627			1.068	29.230		11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	10442	Hadley C	.04410			2. 798	25.455		8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24		Aratus		. 40069	.91493	4.523	23. 585		34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	10476*	Hadley B			. 88285	4.759	27. 748	+1.78	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26		Aratus B	. 08644		.90972	5.427	24.150	+2.56	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27		Aristill. A	. 06593	. 55343	. 83008	4. 541	33.609	-0.29	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28		Autolycus K	. 08731	-	. 85387	5.838	30.892	+0.39	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	10626	Cassini Y	. 02802		. 74369	2.157	41.908	+0.01	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	- 10646*	Cassini M	8 . 04924	8 . 66022	. 74870	3. 762	41.345	-0.98	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31		Cassini B	4 . 05182	4 . 64243		3. 877	39.972		8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32			7 . 05511	7 . 06728		4.276	42. 318	-0.99	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		6	6		4.429		-1.58	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		935A		13	11	102			1.27	14
923 11 10 119 1.64 36 10695* Cassini F .09579 .65421 .75010 7.277 40.864 -0.16 1		930		11	11	95			1.25	5
		923		11	10	119			1.64	13
		934		7	7	53			. 69	6
933 13 15 140 1.57 42.889 1.09	J		Cassiii E				7.019	12,007		Ŭ

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
9353 10^{-50} Cassini K 1010 10^{-5} 1032 4 087 4 145 144 \cdot 0.5 $\frac{1}{28}$ 5 40 10^{-50} Cassini K 10502 7.0438 64103 4 149.840 $+0.24$ 6 41 10765^{+} Trouvelot II 05584 75785 64848 5 797 49 01 \cdot 0.70 12 42 10778^{+} Egede C 04584 75785 64848 5 797 49 01 \cdot 0.70 12 43 10778^{+} Egede C 04584 75785 64848 5 797 49 01 \cdot 0.70 12 44 10802 Archytas L 00855 8372 5547 0 990 8 551 44 \cdot 0 54 44 10802 Archytas L 00865 8372 5547 0 990 8 50.5 148 \cdot 0 54 45 10829 W. 8 ond D 0251 $\frac{1}{3}$ 89485 7 44559 3 225 63.494 \cdot 0 055 10 46 10845^{+} Archytas L 00856 8372 51732 5 000 58 733 \cdot 0 65 47 10847 Archytas W 04526 85552 51732 5 000 58 733 \cdot 0 65 48 10835 Protagoras B 05506 83225 5193 5 714 56 97 \cdot 1 87 49554 Protagoras B 0556 83255 5193 5 714 56 97 \cdot 1 87 49554 Archytas U 07132 82797 55734 7 922 55 838 \cdot 1 08 50 10878 Archytas U 07132 82797 55734 7 922 55 838 \cdot 1 08 51 10924^{+} Barrow A 02236 9 94060 33104 3 853 70567 \cdot 0 68 51 10924^{+} Barrow A 02236 9 94030 33104 3 853 70567 \cdot 0 68 53 10951 W. Bond B 05552 9 90638 \cdot 4.1787 7 568 65057 \cdot 0 68 54 10937 Archytas U 0774 0 88925 \cdot 4.0797 9 51.62815 \cdot 1 04 55 110013 Rhaeticus D 10767 0 0151 9 99333 5 933 3 91 \cdot 1 51 56 110024^{+} Barrow A 02236 9 94300 33104 3 853 70567 \cdot 0 68 57 10031 Rhaeticus D 10767 0 0151 9 99342 6 815 1 631 \cdot 4 61 56 11005^{+} Triesnecker D 10363 0.0113 9 99323 5 953 3 1 114 7 104 57 11013 Rhaeticus B 11876 0 02541 9 99362 6 95.00 0 754 \cdot 2 62 58 11005^{+} Triesnecker D 10363 0 0613 9 99360 6 75				+	+	+	+	+		
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	38		Protagoras E				0.553	49.456		10
40 10756 13 170uvelot II .05074 13 .76436 .75785 .64301 .64848 4.511 49.840 -0.72 .0.70 12 41 10765* Trouvelot .06884 .73785 .64848 5.797 49.301 .0.70 12 42 10778* Egede G .07412 .78688 .61333 6.890 51.861 .0.75 43 10797* Egede B .09840 .77143 .6277 8.908 50.520 .0.95 14 44 10802 Archytas L .00865 .88272 .55647 0.900 58.148 .1.59 4 45 10827 Archytas U .04526 .85522 .51722 5.000 58.733 +0.63 6 47 10847 Archytas W .04132 .8796 .47992 5.14 56.398 +1.30 .0.714 5.9374 7.922 55.838 +1.20 .0.823 .9400 .3194 3.853 70.567 -0.638 1.0 1.0 1.0 .0.8224 .45079 .251 62.815 -0.63 4 1.0 </td <td>39</td> <td>10750</td> <td>Cassini K</td> <td>. 05026</td> <td>. 70865</td> <td>. 70329</td> <td>4,087</td> <td>45.144</td> <td>-0.58</td> <td>5</td>	39	10750	Cassini K	. 05026	. 70865	. 70329	4,087	45.144	-0.58	5
41 10765* 96 Trouvelot .06584 6 .75785 6 .64848 6 5.797 49.301 .0.70 .50 12 42 10778* 966 Egede G .0714 10 .62757 .6277 8.908 50.520 .6890 .0.981 .6277 .0.800 50.520 .61335 .0.981 .6277 .0.800 50.148 .62757 .14 43 10892 .9662 Archytas L .00865 .62972 .55637 .890457 .0.800 50.148 .62753 .13 .6373 .6373 .0.51 .6373 .0.51 .646 .0.800 50.733 .6373 .0.51 .64933 .64792 .7333 .6373 .7473 .0.51 .64933 .0.680 .61 .7473 .7568 .61.182 .7473 .0.4933 .6733 .74733 .6733 .74733 .6733 .74733 .6733 .74923 .75337 .7568 .714 .68.997 .1.38 .7133 .7132 .80797 .7292 .58.834 .1.88 .1.88 .6743 .6933 .66 48 10852 .9875 Protagoras .07142 .82747 .82797 .53734 .53734 .7292 .58.834 .1.08 .6753 .0.66 .1.76 .6	40	10756	Trouvelot II	. 05074	.76436	. 64301	4.511	49.840	+0.24	6
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	41	10765*	Trouvelot	. 06584	.75785	. 64848	5.797	49.301	-0.70	12
43 10797* Egede B .09840 .77143 .62775 8.908 50.520 -0.95 14 44 10802 Archyuas L .00865 .82972 .55647 0.890 56.148 -1.59 4 45 10629 W. Bond D .02313 .89487 .44556 3.225 63.494 -0.053 6 46 10847 Archytas .04326 .85522 .51732 5.000 58.733 $+0.933$ 6 47 10947 Archytas .04372 .8796 $+1799$ 5.714 56.318 -1.36 7 48 10872* Protagoras .07122 .8225 .55024 5.714 56.338 $+1.90$ 6 50 10878 Archytas U .07343 .8928 .45079 9.251 62.815 -0.64 51 10924* Barcow A .02236 .99309 .31194 3.833 70.567 -0.66 19 6 57 -0.66 19 6 57 -0.62 19 6 1067	42	10778*	Egede G	.07412	. 78685	. 61 335	6.890	51.861	+0.72	8
44 10802 Archytas L .00865 82972 .55647 0.890 56.148 -1.59 4 45 10629 W. Bond D .02511 .89487 .44556 3.225 63.494 -0.05 10 46 10845* Archytas .04526 .85522 .51732 5.000 58.733 +0.93 6 47 10877 Archytas W .04312 .87596 .47912 5.000 58.733 +0.93 6 48 10873 Protagoras B .05506 .87257 .5524 5.714 56.398 +1.08 6 9855 47012 .07333 .8928 .45079 9.251 62.815 -0.50 4 52 10878 Archytas U .0238 .9430 .3137 3.853 70.567 -0.68 19 15 10974* Barrow A .02238 .9430 .8178 .41787 .568 65.057 -0.68 19 53 10951 W. Bond C .0593 .41787 .568 65.057 -0.68 19<	43	10797*	Egede B	. 09840	.77143	. 62779	8.908	50. 520	-0.95	14
45 10829 9878 W. Bond D .02511 .89487 .44556 3.225 63.494 -0.05 10 46 10645* Archytas .04526 .85522 .51732 5.000 58.733 +0.93 6 971 Archytas W .04372 .87596 .47992 5.205 61.182 -0.40 6 48 10683 Protagoras B .05506 .83223 .55014 5.714 56.397 -1.36 7 9857 Archytas U .07332 8928 .45079 9.251 62.815 -0.50 4 9857 W. Bond B .05552 .90638 .41787 7.568 65.057 -0.66 4 10057 W. Bond C .05934 .91072 .40930 8.249 65.576 +0.40 7 51 10957 W. Bond C .05233 .9073 5.953 3.501 +1.75 1.04 7 54 10057 Scoresby .01767 .0151 .9953 6.173 0.864 +2.95 9 9 55 110	44		Archytas L		. 82972	. 55647	0.890	56.148	-1.59	4
46 10845* Archytas .04526 .8522 .51732 5.000 5.733 +0.93 6 47 10847 Archytas W .04372 .87596 .47992 5.205 61.182 -0.40 6 48 10853 Protagoras B .05506 .83225 .55024 5.714 56.937 -1.38 7 49 10872* Protagoras .07142 .82797 .55734 7.292 55.838 +1.08 6 50 10878 Archytas U .07343 .828928 .46024 9.251 62.815 -0.56 4 51 100724* Barrow A .02236 .94300 .33194 .3633 70.567 -0.68 19 72 10950* W. Bond C .05934 .91072 .07749 .5784 6.173 0.864 +2.19 9 51 10051 W. Bond C .05934 .0113 .99353 5.953 .501 +1.68 6 53 10058 Rhaeticus D .10767 .0151 .99354 6.173	45		W. Bond D		. 89487	. 44556	3. 225	63.494	-0.05	10
47 10847 Archytas W 0.4372 87596 47952 5.205 61.182 -0.46 6 48 10853 Protagoras B 0.5506 83225 55024 5.714 56.397 -1.36 7 985A Protagoras 0.7132 82797 5.5734 7.292 55.838 $+1.08$ 6 985A Archytas U 0.7343 88928 45079 9.251 62.815 -0.50 4 10878 Archytas U 0.7343 88928 45079 9.251 62.815 -0.66 1006 10924 Barrow A 0.02236 9.938 41787 7.668 65.057 -0.68 19 53 1006^{47} W. Bond C 0.5934 9.1077 40930 8.249 65.576 40.40 7 54 10075^{7} Scoresby 0.5223 9.9734 6.173 0.864 $+2.19$ 9 355 11001 Rhaeticus D 1.0767 0.6113 9.9375 5.9	46	10845*	Archytas	.04526	.85522	. 51732	5.000	58.733	+0.93	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47		Archytas W	.04372	. 87596	. 47992	5.205	61.182	-0.40	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48		Protagoras B	.05506	. 83225	. 55024	5.714	56 . 397	-1.36	7
	49	10872*	Protagoras	.07132	. 82797	. 55734	7.292	55.838	+1.08	6
51 10924* Barrow A .02236 .94300 .33194 3.853 70.567 -0.66 4 52 10950* W. Bond B .05552 .90638 .41787 7.568 65.057 -0.68 19 53 10951 W. Bond C .05934 .91072 .40930 8.249 65.576 $+0.40$ 7 987 Scoresby .05223 .97749 .20744 14.132 77.655 $+1.08$ 6 1013 Rhaeticus D .10767 .01511 .99534 6.173 0.864 $+2.9$.95 56 11001 Rhaeticus B .11876 .02851 .99382 6.815 1.631 $+1.52$.95 856 11015 Dembowski A .11275 .05296 .99340 6.475 3.032 $+2.05$ 11 60 11064* Godin D .14354 .01734 .99039 8.246 0.992 $+1.54$ 11 60 11064* Godin A .16776 .04714 .98613 9.654 2.698 $+2.45$	50		Archytas U	. 07343	. 88928	. 45079	9.251	62,815	-0.50	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51			. 02236		. 33194	3.853	70.567	-0.06	4
	52		W. Bond B			. 41787	7.568	65.057	-0.68	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53		W. Bond C	. 05934	.91072	. 40930	8.249	65.576	+0.40	7
	54		Scoresby	. 05223	.97749	. 20744	14.132	77.655	+1.08	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Rhaeticus D			.99534	6.173	0.864	+2.19	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56		Triesnecker D	.10363	.06113	.99375	5.953	3. 501	+1.75	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	835	Rhaeticus B	.11876	. 02851	.99362	6.815	1.631	+1.91	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Dembowski A	.11275	.05296 5	.99340	6.475	3, 032	+2.05	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							8.246	0,992	+1.54	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		829		.16776 5	.04714	.98613	9.654	2,698	+2.45	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Godin B	•			9.800	0.754	+2.69	8
		870C		5	_		7.015	5.959	+1.23	7
		870		5	.13405	.98151	8. 314	7.696	+1.65	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		870A		8	10		8, 597	7.994	+2.87	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		868		7	6	.97753 54	8.525	8.766	+0.23	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		81.0B		4	4		9.226		+0.72	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		826		5	6	44			+1.99	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		820		6	6	47				5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		798		7	7	54				21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		796		6	6	42			+1.02 .69	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		801A		7	6	49			. 81	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		797		7	7	48			. 80	
		-		4	4	30			. 49	
	/4		Maninus H				8, 638	17.825		4

	B & M	Designation	E +	F +	G +	Long +	Lat +	Н	P1.
75	-	(bright spot)	. 14462	. 36725	. 91986	8.934	21.524	+1.68	4
76	- 11347*	Sul. Gall. A	15 .14410	15 . 37591	157 .91580	8.942	22.071	2.51 +0.66	11
77	606A 11350*	Manilius A	7 . 15073	7 . 30292	53 94229.	9.088	17.611	. 84 +2. 07	6
78	795 -	(bright spot)	10 . 18248	9 . 34942	88 91961 .	11.223	20. 440	1.44 +0.93	7
79	11393*	Sulp. Gallus	16 . 19027	17 . 33573	151 .92354	11.641	19.598	2.41 +1.60	6
80	606 11402*	Hadley A	10 . 10416	10 . 42295	90 . 90051	6. 597	25.012	1.44 +0.57	14
81	897 11431	Aratus D	.13622	10 . 41240	85 .90096	8. 597	24. 351	1.33 +0.31	8
82	11450	Aratus C	. 15000	. 40773	46 . 90058	9.456	24.065	. 72 -0. 18	8
83	899 11486	Linné ·	. 18088	. 46510	66 . 86588	11.799	27. 735	1.03 -0.06	14
84	629 11548 750	Calippus B	$10 \\ .14142 \\ 5$	10 . 58852	92 . 79661	10.066	36.032	1.38 +0.82	8
85	750 11559 750A	Calippus D	. 15773	. 59234	39 . 79052	11.283	36. 309	. 54 +0. 58	10
86	11588 635B	Linné G	. 18616	. 58568 6	36 . 78866 27	13. 281	35. 858	. 51 - 0. 29	13
87	11595 635A	Linné H	. 19765	. 55530	37 . 80750 56	13.753	33. 741	. 51 -0. 45 70	7
88	11606 932	Cassini C	. 10115	. 66554 9	. 73880	7.795	41.749	. 79 -0. 87 1. 05	14
89	11600 749	Calippus A	. 10965	. 60211	. 79096 73	7.892	37.017	+0.15	4
90	11635	Calippus F	. 13169 18	. 65047 19	. 75051 127	9.952	40. 486	+3. 23	4
91	11667 729	Lamèch	. 16703	. 67929 7	. 71622	13.127	42.727	+2.00 0.77	6
92	11668 730	Eudoxus D	.16625	. 68636 6	. 70948 43	13.187	43. 286	+1.81 .53	17
93	11718* 965	Egede A	. 11313	. 78254 6	. 61144 44	10. 482	51.528	-0.85 .47	29
94	11746* 967	Egede C	. 14393 7	. 76739 7	. 62440 54	12.980	50.137	-0.45 .59	13
95	11773 724A	Aristot. D	. 17159 8	. 73656	. 65413 62	14.698	47.443	-0.13 .70	7
96	11837 697A	C. Mayer E	. 13332	. 8761 2 15	. 46498 144	15.998	61.096	+1.36	5
97	11845 698	Sheepshanks	. 14939	. 85876 10	. 49018 89	16.949	59.174	+0.05	6
98	11858* 699B	C. Mayer F	.15716	. 88301 9	. 44278 65	19.541	61.982	+0.40	13
99	11863* 700	Sheepsh. C	.16883	. 83815 12	. 51655 92	18.099	57.041	-1.89 .83	19
100	11866* 698A	Sheepsh. A	.16261 13	.86528 12	. 47301 92	18.971	59.969	-0.96 .76	9
101	11872 725B	Galle B	. 17026 14	. 82349 11	. 54071 108	17.478	55.456	-0.44 1.02	5
102	11872A -	-	.17174 7	. 82052 6	. 54355 55	17.534	55. 211	-1.57 .52	4
103	11876 698B	Sheepsh. B	.17802 9	. 86792 8	. 46212 72	21.067	60. 291	-1.28 .58	4
104	11896 696A	Kane F	.19915 9	. 86217 9	. 46573 69	23.151	59.565	-0.08 .56	10
105	11904* 991	Meton B	. 09955	.94694 20	. 30694	17.969	71.182	+0.71 .96	5
106	11956* 999A	Baillaud E	. 15852	.96241	. 21875 67	35.929	74.320	-0.68 .25	4
107	12012 831B	Godin E	. 21430	. 02949	.97677 62	12.374	1.689	+0.76 1.05	8
108	1 2033 562A	d'Arrest A	. 23585	. 03419 7	.97101	13.652	1.959	-0.30 1.17	4
109	12037 560	Whewell	. 23686	.07294	.96965 64	13.727	4.179	+1.43 1.08	7
110	12040 3650	Theon Sr. B	. 24395	.00342	.97116	14.100	0.195	+2.32	18
111	12048 560A	Whewell A	. 24349 7	.08242 6	.96696 50	14.133	4.725	+0.95 .84	5

321

	B & M	Designation	Е	F	G	Long	Lat	H	Pl.
			+	÷	+	+	+		
112	1 2055 559	de Morgan	. 25677	. 05819	.96504 58	14.899	3.334	+0.54	7
113	12058	Ariadaeus B	. 25888	. 08568	.96437	15.026	4.904	+3.79	4
114	565 12066*	Cayley	. 26006	. 06922	.96270	15.116	3.970	1.04 -0.68	15
115	561 12094*	Dionysius	. 29725	. 04889	73 .95384	17.308	2.801	1.22 +0.48	14
116	553 12098	Ariadaeus D	. 29175	. 0856i	. 95370	17.009	4.906	1.38 + 1.73	6
117	565A 12097	Ariadaeus	. 29673	. 08034	63 . 95050	17.337	4.612	1.05 -1.78	8
118	563 12110*	Silberschlag	15 . 21593	15 .10845	130 .97065	12.541	6.224	2.15 +0.48	15
119	816 12116*	Boscovich A	.21581	.16480	.96312	12.629	9.479	1.11 +1.16	15
120	810A 12122* 819	Silberschlag A	. 22706	.12116	37 .96696	13.214	6.954	.62 +1.08 .52	36
121	12136* 579A	Jul. Caes. B	. 23777	.17006	31 .95808	13.937	9.774	+2.93	10
122	12162 579B	Jul. Caes. C	.26250	.12730	45 .95694 51	15.339	7.310	+0.73	8
123	12182 579C	Jul. Caes. D	$.2820\frac{7}{4}$. 12543	.95140 47	16,512	7.203	+0.38	8
124	1 22 29 604	Menelaus A	.22132	. 29367	.93032	13.381	17.071	+0. 62	13
125	12245 595A	Menelaus C	. 24178 10	. 25593	. 93535 75	14.493	14.837	-1.01 1.22	6
126	12263	Menelaus E	. 26666	. 22620 11	.93704	15.885	13.071	+0. 28	6
127	12268 591	Menelaus	. 26354	. 28019	.92224	15.947	16.284	-1.32	6
128	12310 605	Sul. Gall. B	. 21354 5	. 30909	.92700 40	12.972	18,000	+0.40	9
1 29	12320	-	. 22539 14	. 309 60 17	.92368	13.712	18,036	-0.14 2.78	4
130	-	Bessel F	. 22252 13	. 36240 15	. 90610 159	13.797	21.226	+1.62 2.50	4
131	-	Bessel G	. 23676	. 36070	.90323	14.688	21.121	+1.72	5
132	12353* 627	Bessel E	. 25076	. 33607	.90713	15.452	19.650	-1.12	22
133	12387* 619	Bessel	. 28533 19	. 3701 7 19	. 881 89 171	17,928	21,769	- 3, 33 2, 62	14
134	12418 631	Linné A	. 21 69 7	. 48401 6	. 84791 42	14,353	28,942	+0. 25 0. 62	12
135	12454* 628	Linné E	. 25267 4	. 44705	. 85820	16.405	26. 551	+0.18 0.46	16
136	12458 634	Linné D	. 25766	. 48024	, 83789 60	17.093	28.715	-0.80 0.87	9
137	1 2503 635	Linné F	. 20344	. 53436	. 82049 36	13,925	32, 298	+0.11 0.51	17
138	12510* 632	Linné B	. 21074 7	. 50770 7	. 83464 56	14.170	30. 531	-1.05 0.81	25
139	11694 746B	Alexander B	. 19991 18	.64596 19	. 73414 181	15.232	40.330	- 3, 31 2, 31	9
140	12659 730A	Eudoxus E	. 25792 10	. 69909 10	.66727 67	21.133	44, 340	+0.43	9
141	12701* 728	Eudoxus B	. 20865	.71491 10	.66679 87	17.375	45, 658	-0.66 1.01	7
142	12721* 732	Eudoxus G	. 22589 5	.71167 5	. 66542 35	18.750	45.362	+0.25 .40	22
143	12731* 727	Eudoxus A	. 23943 8	.71717 8	. 65384 74	20.112	45.845	-0.72	15
144	l 2743* 723	Mitchell E	. 24894	. 73894	. 62620	21.679	47.637	+0.11	13
145	12779 723A	Aristot. N	• 27198 7	. 79670	. 53824	26.808	52.876	-1.38	5
146	12815* (679)	Kane G	. 21873	.85862	. 46257	25.307	59,208	-0.83 .63	10
147	12820 725A	Galle A	. 22257	. 80790	. 54515	22, 208	53.913	-0.50	11
148	12824 722	Galle C	. 22075	. 84542	. 48522	24.463	57.766	-0.95	15
149	L 2836 678	Democr. B	. 23899 13	.86616 13	. 43701 101	28,673	60.098	-1.45 .77	16

	B & M	Designation	Е	F	G	Long	Lat	Н	P1.
			+	+	+	+	+		
150	12857* 677	Democr. A	. 25524	. 87916	. 401 61 54	32.437	61.575	-0.56 .38	19
151	12870*	Aristot. M	.27216	.80280	. 53031 51	27.167	53.406	-0.18	13
152	724 12874*	Gärtner F	. 27038	. 84273	. 46508	30.172	57.447	-0.35	6
153	672B 12895	Gärtner D	10 . 29156	10 . 85184	77 . 43388	33.900	58.464	. 62 -0.96	11
154	672A 12902	Arnold G	10 . 20079	$10 \\ .92295$	70 . 32921	31.379	67.324	. 53 +0. 46	10
155	689A 12910*	Moigno A	$13 \\ .21114$	13 .90473	114 . 36977	29,726	64.796	. 65 -0.13	8
156	685A 12912*	Arnold F	. 22011	, 92340	76 . 31154	35.242	67.554	. 49 -1. 59	5
157	689B 12970	Schwabe G	11 . 27796	.90950	94 . 30734	42.126	65.504	. 51 -0.95	11
158	681 13021*	Schmidt	. 32183	18 01710	136	18.769	0.979	. 73 +0. 65	14
159	552 13026	Ritter D	. 32086	. 06418	25 . 94529	18.748	3.678	. 41 +0. 56	9
160	545 13047*	Manners	. 34107	. 08009	53 .93621	20.017	4.595	. 87 -0. 67	15
161	537 13056*	Arago B	. 3544 <u>6</u>	.06037	71 .93358	20. 790	3.459	1.15 +0.74	16
162	536A 13066 5260	Arago C	$.3651\frac{5}{4}$. 06810	$42 \\ .92848 \\ .92848 \\ .92848 \\ .92$	21.468	3.904	. 68 +0. 03	4
163	536B 12195 572	Sosigenes	. 29891	.15159	92 . 94326 73	17.582	8.710	1.48 +1.79 1.20	5
164	13113 573	Sosigenes A	. 31403	.13547	. 93926 92	18.486	7.789	-0.72 1.50	14
165	13122 573B	Sosigenes C	.32240	.12597	.93842 41	18.960	7.235	+0.38	10
166	13138* 535	Maclear	. 33799	.18264	.92434 97	20.085	10.512	+1.74 1.56	6
167	13139 533	Ross B	10 . 33787 5	. 19753	.92030	20.159	11.391	+0.11	12
168	13160* 536	Arago	. 36281	. 10764	. 92433	21.430	6.186	-2.08 1.43	4
1 69	13172 536C	Arago D	. 37794	. 12053	.91802	22.376	6.922	+0.11	4
170	13184 536D	Arago E	. 38147	. 14832	. 91 21 4 49	22.695	8.531	-0.42	10
171	13203 594A	Auwers A	.30505	. 23838 6	.92254 43	18.297	13.784	+0.83	12
172	13210 534	Ross C	. 31780	. 201 52	.92606	18.940	11.630	-0.70 .74	10
173	13218* 587	Tacquet	. 31478	. 28627	. 90467 46	19.185	16.639	-0.46	25
174	13234 592	Tacquet A	. 33518	. 24778	.91005	20. 219	14.332	+1.68 1.06	5
175	13243* 593A	Tacquet C	. 34955	. 23298	.90747 27	21.066	13.472	-0.03	17
176	13281* 534A	Ross D	. 38620	. 21 79 3	. 89598 34	23. 317	12.591	-0.50	12
177	13292 520A	Plinius A	. 39855	. 22482	. 88885 138	24.150	12.995	-0.49 2.13	4
178	13326 623	Deseilligny	.32768	.36041	. 87252 54	20.583	21.141	-1.25 .82	19
179	1 3405 625	Bessel D	. 30155	. 45894	. 83452 63	19.867	27.348	-1.75 .91	16
180	13419 488	Posidonius N	. 31144	. 49505	. 81105 39	21.006	29.675	-0.11	13
181	13421* 622	Bessel A	. 32507	. 41847	. 84784 22	20.977	24.743	-0.33	33
182	13483 509B	Le Monnier B	. 38545	. 43210	. 81 542 53	25.300	25.598	+0.17 .75	7
183	13518* (490C)	Luther H	. 31 300	. 58808	. 74560	22. 772	36.026	-0.24 .47	16
184	13544*	Luther	. 34206	. 54730	. 76320	24,141	33. 200	-0.86 .92	20
185	491 13577 490B	Posidonius G	. 37522 7	. 56993 7	. 73038 50	27.191	34.763	-0. 81 . 63	10
186	13584* 490A	Posidonius F	. 38274 5	. 54138 5	.74827 46	27.089	32. 787	-0.44 .60	16

	B & M	Designation	Е	F	G	Long	Lat	Н	P1.
			+	+	+	+	+		
187	13585* 490	Posidonius P	. 38536	.55292	. 73607 107	27.633	33.643	-3.46	12
188	13603	Plana G	. 30211	. 62971	. 71539	22.894	39.038	-0.36	4
189	13604 645B	Plana E	. 30386	. 64994 11	. 69 661 85	23.566	40.536	.76 +0.01	15
190	13614 645C	Plana F	. 31214	.64013	. 70076 63	24.009	39.843	1.03 -1.51	6
191	13626* 645A	Plana D	. 32887	. 66584	. 67029 33	26.134	41.726	.77 +0.68	21
192	13637* 645	Plana C	. 33482	. 67893 17	. 65148 149	27.200	42.827	.38 -2.19 1.69	12
193	13640 467	Daniell D	. 34774	. 60214	. 71859	25.823	37.026	-0.11	19
194	13666 639A	Mason B	. 36862	. 66683 6	. 64675 46	29.681	41.852	-1.02 .52	6
195	13676	-	. 37395	. 66571 6	. 64628	35.054	41.719	+0.60	4
196	13718*	Baily K	. 31578	. 78176	. 53649 57	30.481	51.469	-1.14 .53	11
197	13745 660	Baily A	. 34385	. 75092 14	. 561 63	31.476	48.750	- 2.14 1.21	12
198	13767 661	Baily B	. 36219	. 77625	. 51507 61	35.114	50.952	-0. 83 . 55	11
199	13772 648	Bürg A	. 37260 6	. 72931 6	. 57342 45	33.015	46, 842	-0.40 .45	13
200	13842 (432E)	Gärtner M	. 34071	. 82350 12	. 45213	37.000	55.492	-1.16 .61	9
201	1 3845*´ 429	Thales A	. 34126 15	. 85262 14	. 39479 105	40.840	58.531	-0.63	7
202	14044* 248A	Maskelyne G	. 44846	.04054	. 89244 37	26.679	2.324	-0.69	14
203	14073	Maskelyne Y	. 47133	.03052	.88062 145	28.156	1.750	-1.24 2.22	4
204	14081	Maskelyne W	. 48742	. 01453	. 87180 59	29.209	0.833	-1.89	5
205	14083* 244A	Maskelyne B	. 48339	.03485	.87467 69	28,927	1.997	-0.06 1.05	19
206	14095 248C	Maskelyne K	. 49423	. 05675 6	. 86752 45	29.670	3. 253	+0.06	11
207	14118* 534D	Ross G	. 41278 6	.18565 6	. 89186 51	24.836	10.697	+0. 23 . 79	13
208	14136 259A	Jansen G	. 43252 5	.16185 5	. 88680 37	25.999	9.315	-0.27 .57	13
209	14148* 259	Jansen B	. 44102 15	.18570 15	. 87719 133	26.691	10. 710	-1.35 2.03	10
210	14163* 249	Maskelyne M	.46295 6	.13614 6	. 87585 41	27.859	7.824	-0.03 .62	12
211	14229* 519	Dawes	.42356 8	. 29 609 9	. 85569 76	26.335	17.229	-0.63 1.13	14
212	14254* 255B	Jansen E	. 45165 6	. 25016 6	.85693 49	27.791	14.480	+0. 78 . 73	20
213	14257 255C	Jansen D	. 45812	. 27085	.84676 36	28.414	15.712	+0. 20	11
214	14267 271	Jansen C	. 46785	. 27963 5	. 83839 38	29.162	16.238	-0.02 .55	15
215	14189 259C	Jansen K	. 48483 7	. 19965 7	. 85233		11.508	+1.20	7
216	14285 259D	Jansen L	. 48463	. 25380	. 83736	30.060	14.699	+0. 39	14
217	14318 509C	Le Monnier C	. 41092	. 38037	. 82819	26. 389	22.363	-0.49	11
218	14361 270A	Vitruvius E	. 46277	. 31991	. 82677	29.237	18.657	+0.04	11
219	14366* 280	Littrow B	. 46131	. 36960 9	. 80530 76 78706	29.805	21.714	-1.81 1.06	11
220 221	14442	Le Monnier II	. 44733 6 44506	. 42195	.78796 46 76420	29.583	24.970	-0.85 .63	6
221 222	14446	Le Monnier K	. 44506 14 45300	. 46533	. 76429 107 73081	30.213	27.750	-1.09 1.42	10
222 223	14459 505 14490*	Chacornac A Littrow D	. 45390 9 . 49604	. 49723 9 . 40183	. 73981 59 . 76968	31.530 32.800	29.807 23.693	+0.50 .76	10 19
223 224	281 14494	Le Monnier U	. 49604 5 . 48938	. 40185 5 . 44235	. 76968 35 . 75193	32.800 33.057	23. 093 26. 245	-0.06 .48 +0.49	4
264	-	De Moniner O	. 40930 8	. 44235 8	. 75195	55,057	20. 243	+0.49	4

	B & M	Designation	E	F	G	Long	Lat	Н	P1.
			+	+	+	+	+		
225	14512* 482	Posidonius A	. 41854 8	. 52515 8	. 74089 66	29.462	31.680	-0.11 .85	25
226	14516 487	Posidonius M	. 41256	. 56419	. 71480 66	29.992	34.356	-0.47	18
227	14529	Daniell X	. 42261	. 59572	. 68326	31.737	36.557	+0.28	6
228	14534	Posidonius B	.43130	$.5468\frac{6}{4}$	46 . 71734	31.016	33.157	.55 -0.32	8
229	483 14558*	Hall K	. 45743	.58127	45 . 67217	34.236	35.561	.56 -0.93	13
230	(498) 14561	Chacornac C	. 46233	. 51175	38 . 72283	32.603	30.812	. 44 -1. 63	8
231	14586	Hall C	19 . 48141	20 . 56967	176	35.898	34.755	2.21 -1.22	9
232	497A 14588	Hall J	20 . 48867	20 58029 .	164 . 65157	36.869	35.469	1.90 +0.07	16
233	497 14595	-	9 .48976	, 55782	68 66943 .	36.189	33.921	. 77 -0. 73	4
234	14608	Mason C	12 . 40803	12 . 68052	79 . 60592	33.956	42,971	.92 -2.84	16
235	640 14614*	Grove	11 . 41470	11 . 64691	90 . 63866	32.996	40. 349	.95 -1.43	5
236	463 14627	Hercules C	14 . 42475	14 . 67854	107 . 59807	35. 382	42.768	1.19 -1.29	18
237	456 14629	Hercules J	9 . 42600	9 . 69574	66 . 57744	36. 417	44.114	. 69 - 0. 90	11
238	454B 14632	-	8 . 43571	8 . 62476	55 . 64773	33.927	38.670	.55 -0.24	4
239	14681	Maury D	11 . 48070	11 . 61905	72 . 62110	37. 738	38.245	.81 +0.05	9
240	385A 14704	Hercules B	8 . 40035	8 . 74087	54 53879 .	36.614	47.822	. 58 -0. 47	7
241	454 14732A*	Hercules G	13 . 43507	13 . 72412	100 . 53175	39.289	46.504	.94 -3.14	11
242	458 14737*	Hercules A	15 . 43207	15 . 77923	118 . 45377	43.596	51.197	1.09 -0.18	4
243	453 14750*	Hercules D	16 . 45326	14 . 70440	122 .54603	39.696	44.787	.96 -0.20	18
244	457 14815*	de la Rue J	8 . 41059	8 . 85680	65 . 31161	52, 803	58.969	. 62 -0.18	6
245	417A 14853*	Endymion G	21 . 45645	19 . 83290	142 . 31177	55.665	56.429	. 77 - 0. 63	6
246	409 15003*	Maskelyne	23 . 49983	24 . 03799	228 . 86440	30, 038	2.178	1.24 -1.34	5
247	242 15009	Maskelyne N	.50304	10 . 09359	92 . 85983	30. 329	8.367	1.38 +0.97	6
248	15038	Maskelyne H	6 . 53169	7 .08584	47 .84328	32. 231	4.921	.70 +1.03	16
249	248B 15106*	Sinas E	6 . 50759	6 .16794	44 .84558	30.975	9.663	. 64 +0. 74	13
250	261 15115*	Sinas	6 . 51758	6 . 15443	41 . 84272	31.557	8.875	.60 +1.66	20
251	260 15147	Sinas H	7 . 54407	7 .17433	50 . 82156	33. 514	10.032	.73 +1.18	4
252	- 15147A	Sinas J	7 .54566	8 .17948	79 . 81917	33.668	10.334	1.13 +0.87	12
253	15201*	Jansen F	4 . 50361	4 . 21 849	34 . 83544	31.081	12.624	. 48 -0, 59	16
254	255A 15228	Vitruvius K	9 . 52774	9 . 28174	69 . 80259	33, 326	16.346	1.00 +1.77	4
255	15254	Vitruvius G	11 . 55089	11 . 24043	72 • 79958	34.565	13.907	1.00 +0.53	6
256	15284*	Maraldi B	7 . 5798 <u>4</u>	. 24806	. 77684	36. 737	14.353	.75 +1.07	29
257	275A 15329	Römer L	. 52248	. 39555	35 . 75530	34.673	23. 301	. 47 -0. 07	18
258	309 15330*	Vitruvius A	. 52970	. 30513	. 79201	33. 774	17.757	1.06 +0.84	17
259	267 15338*	Römer K	. 53647	. 38415	70 . 75140	35.525	22. 591	.96 -0.02	12
260	308 15338A	Römer KA	. 53705	. 38938	40 . 74815	35. 672	22.918	. 52 -0. 20	4
261	15354	Maraldi A	. 55575	10 . 34247	85 . 75791	36. 251	20.021	1.10 +0.49	7
262	273A 15368 307	Römer J	6 .56820 7	6 . 38085 7	47 . 72992 50	37.898	22. 378	.62 +0.59 .63	9

	В&М	Designation	E	F	G	Long	Lat	11	Pl.
263	15410		+	+	+	+	+		_
	15412	Römer M	. 51330	. 42732	. 74518	34.560	25. 279	+1.19	7
264	15438	-	. 53076	. 48966 10	. 69369 71	37.420	29.275	+2.33	4
265	15503 492	G. Bond	. 50019 9	.53600 9	. 67880 80	36. 385	32, 443	-1.52 .94	7
266	15512 495A	G. Bond A	.51111 7	. 52417 7	. 68242 47	36. 831	31.582	+1.46	11
267	15547 384	Maury B	. 54776 10	. 57523 9	. 60613 74	42.104	35.149	-1.46 .78	8
268	15548* 383	Maury A	. 54019 14	. 58761 13	. 60157 118	41.922	36.008	-0.89	4
269	15610 385	Maury	. 50941	. 60369 11	. 61 338 94	39.709	37.130	+0.15	13
270	15645A* 391	Cephcus A	. 54674	. 65645 12	. 51911 90	46.484	41.046	-0.58	24
271	15785 397F	Mercurius H	. 58461	.75729	. 289 69	63.640	49.253	-0.71	8
272	16046*	Taruntius F	26 . 64795	26 . 06871	243 . 75865	40.500	3.939	1.22 +0.09	8
273	221 16049*	Taruntius E	.64227	14 . 09 668	107 . 76133	40.151	5.543	1.41 +1.29	13
274	219 16066*	Secchi B	$16 \\ .66108$	16. 06441	132 . 74725	41.498	3.693	1.75 -0.38	13
275	237B 16116*	Cauchy	. 61553	.16689	43 . 77069	38.613	9.603	.56 +0.60	14
276	262 16137	Cauchy D	. 63653	15 .17449	118 . 75128	40. 273	10.048	1.58 +0.03	4
277	263 16294	Proclus F	10 . 69703	9 . 24588	79 . 67418	45.954	14.277	1.03 +0.72	10
278	206 16300	Maraldi M	. 60073	6 . 30028	50 . 74106	39.029	17.472	. 59 +0. 19	7
279	274 16313*	Macrobius A	6 . 61007	6 . 33503	46 .71749	40.373	19.582	. 59 -0. 68	14
280	182 16315*	Macrobius B	10 . 61054	10 . 35749	88 .70747	40.793	20.934	1.10 +0.93	22
281	183 16446*	Tralles A	64902	6 . 46125	48 . 60461	47.028	27.474	. 59 -0, 41	10
282	177 16476	Tralles C	16 . 67118	16 . 46670	139 . 57578	49.374	27,823	1.46 -0.16	4
283	178A 16485*	Tralles B	18 . 68734	17 . 45840	146	50.650	27, 281	1.46 +0.15	20
284	178 16504*	Berzelius F	. 60439	8 . 54220	62 . 58361	46.002	32.835	. 61 -0.11	10
285	312 16541	Geminus G	. 64367	11	. 56689	48. 629	30. 851	.90 -1.58	7
286	325A 16625	Hooke D	. 64667 14 . 62680	13 . 65212	. 42358	55.949	40. 761	.97	, 6
	362 17050*		19	. 03212 20 . 03285	. 64871	49.487	1.884	-2.12 1.43 -1.46	10
287	224	Taruntius G	. 75922 12	12	110			1.24	_
288	17060* 225	Taruntius H	. 76393	.00627	. 64424	49.858	0.359	-1.15	17
289	17152*	Taruntius A	. 75823	.12662	. 63864	49.893	7.278	-1.04	25
290	17207 * 198	Proclus	. 70147	. 27790	. 65820	46.822	16.114	+2,18	11
291	17285* 106	Picard	. 78809 26	. 251 68 26	. 55682 214	54.757	14.618	-4.81 2.07	6
292	17361 115	Peirce	.76042 23	. 31300 21	.56267 229	53, 500	18.308	- 6. 26 2. 24	6
293	17378A	Cleomedes FA	.77933 8	. 381 29 8	.49463 62	57.597	22.444	-2.26 .53	11
294	17435 122	Cleomedes B	. 73539 17	.45616 16	. 49791 158	55, 899	27.186	-2.79 1.37	5
295	17530 168	Burkhardt A	. 73785 21	.50876 22	. 44712 226	58.785	30.527	+2.76 1.76	4
296	18004* 227	Taruntius N	. 80351 16	.04196	. 59322 126	53.562	2.405	-0.61 1.30	5
297	18013* 226A	Taruntius O	. 81067	. 03920	. 581 66 61	54.340	2.249	- 2. 56 . 62	12
298	18035* 69	Apollonius C	. 83652 17	.05769	. 54288 177	57.017	3, 310	-1.90 1.41	5
299	18252A* (40)	Picard X	. 85566 10	. 22715	. 46028 76	61.723	13.158	- 3. 82	10
300	18419	Hahn A	. 81458	. 49565	. 29759 303	69.931	29.749	-1.94 1.57	6
301	142 19233	Hansen A	28 . 93791 21	. 23143 22	. 26373 247	74.294	13.362	+2.42	5
	12		21	44	247			1.1.5	

End of Quadrant 1

	B & M	Designation	Е	F	G	Long	Lat +	H .	Pl.
	A a a t -		-	+	+	1 000		.1 70	
302	20017 1229B	Pallas C	. 01900	.07853	. 99771 63	1.090	4.499	+1.70 1.09	4
303	20028	Pallas H	.02726	.08131 8	.99783 56	1.564	4.656	+2.62	7
304	20044* 1229A	Pallas D	.04571	.04172 10	. 99927 69	2.619	2.388	+2.06	6
305	20047 1227	Pallas B	. 04556	. 07356	. 99676 50	2.617	4.216	+0.88	10
306	20069	Bode L	$.0659\frac{3}{2}$. 09831	.99377	3.795	5.637	+1.38	6
307	1218A -	(bright spot)	. 08027	. 09852	51 . 99257	4.623	5.650	+1.17	6
308	20115*	Bode A	.01995	.15682	115	1.156	9.014	1.98 + 1.58	14
309	1214 20136	Bode K	. 03908	. 16192	42 .98701	2.267	9.309	. 72 +1. 68	10
310	1217A 20140	Pallas A	6 . 04042	6 . 10428	43 . 99513	2.325	5.977	. 74 +2. 42	11
311	1226 20141*	Bode	8 . 04209	8 . 11740	64 .99318	2.426	6. 735	1.11 +1.70	12
312	1212 20155*	Bode B	6 . 05295	6 . 15235	54 98749	3.069	8.758	.93 +1.00	30
313	1215 20161*	Bode G	4 . 06145	4 . 11079	34 99297.	3.541	6.354	.58 +1.77	17
314	1213 20235*	M. Polo A	5 . 03281	5 . 25728	36 .96609	1.945	14.904	. 62 +0. 52	13
315	1202 20239*	M. Polo B	5 . 03097	5 . 29580	40 .95596	1.855	17.184	. 67 +2. 01	20
316	1203 20251	Bode E	. 05817	. 21548	43 .97524	3. 413	12.437	. 71 +0. 79	4
317	1219A 20265	M. Polo D	. 06343	. 25784	62 .96441	3, 762	14.937	1.05 +0.51	11
	1204A		6	. 21202	.97397	4.745	12. 240	. 83 +0. 09	12
318	20281* 1217	Bode C	.08086	5	38			. 64	25
319	20284* 1204	M. Polo C	.08442	. 24249	.96547	4.997	14.047	-1.69 1.16	
320	20320 1203B	M. Polo H	.02772 9	. 30625	.95292	1.666	17.809	+2.27	4
321	20374* 1294B	Wallace B	. 07401 5	. 34514 5	.93559 36	4.522	20.191	-0.06 .59	11
322	20442*	Archimedes L	.04107 14	. 42319 14	.90493 140	2.598	25.040	-0.28 2.20	4
323	20490	Archimedes W	. 09933	. 40329	.91062 43	6.225	23.762	+1.51 .68	4
324	20497* 1145	Archimedes A	. 09834	. 47023	. 87728	6.395	28.043	+0.35	31
325	20522* 1147	Archimedes C	. 02225	. 52400	. 85024 66	1.499	31.636	-1.76	21
326	20527*	Aristillus B	. 02733	. 57011	. 82051	1.907	34.777	-0.86	14
327	1146 20533	Archimedes D	.03948	. 53246	. 84495	2.675	32,189	-0.86 .63	14
328	1148 20599*	Kirch E	. 09 684	. 59436	43 . 79802	6.919	36.478	-0.45	13
329	1143A 20603*	Piton B	. 00199	. 63343	48 . 77310	0.147	39.328	. 67 -0. 94	18
330	1131A 20613*	Piton A	. 01 253	. 63977	38 . 76793	0.934	39.794	. 51 -0. 71	12
331	1131 20644	P. Smyth B	. 04453	. 64898	48 . 75947	3. 355	40.465	. 64 -0. 04	6
332	1127B 20646*	P. Smyth	9 .04187	10 . 66746	. 75 .74342	3. 223	41.873	. 99 - 0. 06	15
333	1125 20647	P. Smyth Y	. 04383	8 . 67912	68 . 73306	3. 421	42.761	. 88 +0. 43	5
334	- 20673*	Kirch	8 .07564	8 . 63232	61 . 77091	5.603	39.224	. 78 - 0. 1 3	8
335	1132 20681	Kirch F	7 .08287	8 . 61490	67 . 78421	6.032	37.945	. 90 -0. 04	6
336	1143B 20708*	Alps A	8 .00297	. 78061	66 . 62562	0. 271	51.289	.90 +0.66	9
337	1065 20711*	Alps B	10	10	. 69708	0.901	45.769	.97 -0.96	6
338	1065A 20732*	Plato K	. 03857	. 72835	. 68244	3. 234	46.818	.70 -1,99	18
500	1076		10	10	81	0, 201		.96	10

	B & M	Designation	E	F +	G	Long	Lat	Н	Pl.
339	20742	Plato KA	. 04284	+ 72791.	+ . 68320	3. 557	+ 46.759	-1.37	6
340	20755*	Plato J	11 . 05215	11 . 75445	. 65328	4.564	49.020	1.14 -1.14	15
341	1075 20768*	Plato G	7	7	55 . 61030	6. 251	52.125	. 62 +0. 03	13
342	1072 20773*	Pico C	.07833	. 73329	. 67475	6. 621	47.189	.75	
343	1124 20786*	Plato U	.07835 8 .08299	. 76071	. 64372	7. 346	49.528	-0.75 .70	10
344	1077G 20808*	Timaeus	. 00299 9 . 00442	. 88952	. 04372 70 . 45499		49.528 62.909	-0.05	10
345	1051 20800	Plato HA	10.00975	10.80762	. 43499 89 . 58968	0.556		-1.49 .70	5
346	20800	Plato H	10	10	76	0.947	53.861	+0.06	6
347	1073 20841*		.01996	. 82016	. 57054	2.003	55.159	-1.24	30
	1077E	Plato Q	.04868	. 81433	. 57786	4.815	54.544	-0.50	11
348	20902* 1041	Epigenes A	. 00223	.92067 17	. 38980	0. 327	67.052	-0.36 1.06	11
349	20935* 1027	Anaxagor, A	. 03719 10	.95226 10	. 30219 89	7.016	72.269	-0.43 .47	7
350	20955* 1026	Anaxagoras	. 05009	.95901 17	. 28208 144	10.069	73. 367	+1.54 .71	7
351	20990	Birming. K	.09641 9	.90558 9	. 41055 63	13.215	65.029	-1.81 .45	4
352	20993 1328D	Fontenelle K	. 09443 14	.93726 14	. 33571 112	15.710	69.590	+0.06 .65	5
353	21038 1250	Schröter A	.13496 5	.08411	.98775 39	7.780	4.822	+0.81 .67	4
354	21065 1253B	Schröter G	.16339	.05551 5	.98527 41	9.415	3.181	+0.46	10
355	21067* 1253	Schröter D	.16467	. 07867	.98353	9.504	4.510	+0.55	11
356	21073	Gambart BA	.17880	. 03760 10	.98436 69	10.295	2.152	+2.04 1.18	6
357	21085 1502A	Gambart H	.18363	.05627	. 981 39 46	10.598	3.225	+0.01	9
358	21104* 1253A	Schröter J	. 10505	.14840	.98397	6.093	8,528	+1.09 1.04	22
359	21211 1219B	Bode H	.11069 10	. 21169 10	.97084 97	6.504	12.223	-0.35 1.64	5
360	21252* 1283B	Eratosth. K	. 15629	. 22259	.96209	9.227	12.863	-0.35	6
361	21 289 1 283D	Eratosth. D	. 18016	. 29953	55 .93742	10.878	17.420	.92 +0.81	4
362	21331* 1283	Eratosth, A	12 .13704	.31461	113 .93912	8.302	18.340	1.84 -0.25	6
363	21342* 1283A	Eratosth. B	. 14289	. 32066	.93632	8.676	18.703	1.04 -0.06	21
364	21360	Eratosth. F	. 16354	. 30377	30 .93908	9.878	17.676	. 49 +0. 77	4
365	1283F 21370	Eratosth, E	12 .17918	12 . 30791	108	10.867	17.951	1.76 -1.69	4
366	1283E 21420*	Archimedes F	10 .12390	10	. 90346	7.808	24.200	1.41 -0.38	15
367	1150 21428*	Archimedes G	12 .12352	12 . 48642	95 . 86518	8.125	29.099	1.49 +0.34	4
368	1150A 21435	Beer	12 .14046	14	143 . 87883	9.080	27.077	2.15 -0.79	11
369	1185A 21445A	Feuillée	.14537	. 45955	53 . 87525	9.430	27.382	. 81 -1. 41	18
370	1186 21486*	Timocharis B	. 18603	. 46715	. 86402	12.150	27.859	. 82 -0. <u>5</u> 5	12
371	1298 21503*	Spitzberg. A	. 10360	. 53996	47 . 83504	7.072	32.688	. 71 -0. <u>36</u>	12
372	1141 21524A	Spitzberg. D	6 .12685	. 54853	49 . 82577	8, 733	33. 287	. 71 -0.98	4
373	1143 21524	Spitzberg. C	13 .12829	15 .54236	151	8.786	32.854	2.16 -0.49	17
374	1142 21610	Kirch G	.11163	. 60660	31 . 78596	8.083	37. 384	. 45 -1. 60	5
375	21638*	Pico E	.13053	. 68151	57 . 72110	10.260	42.922	.78 +1.28	7
	1123		7	7	69			.86	

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
			-	÷	+	-	+		
376	21648* 1122	Pico D	. 14193	.68693 6	. 71180 46	11.276	43. 423	-1.15 .57	17
377	21663* 1302	Le Verrier D	.16409 12	. 63890 12	. 74833 120	12.367	39.826	-4.25 1.56	12
378	21 664 1 304C	Le Verrier B	.16968	. 64448	. 74496	12,831	40.148	-0.77	10
379	21 680*	Le Verrier U	.18104	. 60473	. 77602	13,131	37.194	+0.59	4
380	21705A	-	.10822	15 . 75820	97 . 64293	9.554	49.307	-0.05	8
381	21762	Pico BA	.16717	12 . 72881	. 66235	14.165	46.853	.98 -1.90	6
382	21766* 1069	Plato D	.16220	. 76158	35 . 62739	14.495	49.605	. 40 -0. 06	10
383	21768*	Plato P	.16276	. 78185	. 60065	15.161	51.481	.86 -1.28	11
384	1074A 21769	Plato M	. 1 6028	. 79891	70 . 57857	15.484	53.076	. 73 -1.14	10
385	1074 21776*	Plato E	. 17957	$.7623\frac{4}{2}$. 62065	16.136	49.717	. 69 -1. 20	11
386	1070 21779*	Plato B	. 17808	. 79883	56 . 57521	17.202	52.991	. 60 +0. 61	6
387	1066 21782*	Pico B	. 18222	. 72471	. 66447	15.335	46.446	. 89 -0.06	8
388	1121 21811*	Plato T	.11298	. 81420	. 56953	11.220	54.506	.76 +0.04	12
389	1077D 21849*	Fontenelle	. 14509	. 89331	59 . 42574	18.818	63. 274	.58 +0.27	5
390	1323 21863	Plato W	.16472	21 . 83938	187. 51240	17.280	57.345	1.38 -4.35	10
391	1077B 21888*	Fontenelle B	20 . 18370	20 . 88099	170 . 43339	22,970	61.884	1.51 -1.99	4
392	1326 21890	Plato C	. 19850	. 80050	.56436	19, 378	53. 227	.50 -1.13	8
393	1067 21902*	Fontenelle A	. 10587	. 92399	109 . 36742	16.074	67.519	1.07 -0.03	5
394	1324 21911	Fontenelle L	.11352	19 .91638	179 . 38176	16.560	66.509	1.14 -1.41	5
395	1328E 21912	Philolaus F	. 1173 <u>1</u>	. 92683	55 . 35404	18.332	68.079	.37	6
396	1347 21990*	Fontenelle C	. 19687	. 901 80	40 . 38318	27.193	64.465	. 25 -1.02	10
397	1328 22003	Gambart B	. 20015	. 03762	.97931	11.550	2.155	. 37 +0. 45	12
398	1499 22003A*	Gambart G	. 20812	. 03435	97 .97764	12.017	1.968	1.65 +0.24	26
399	1502 22005*	Gambart C	. 20430	. 05842	30 .97715	11.809	3. 349	. 51 -0. 02	14
400	1500 22009	Gambart M	. 20165	10 . 09394	91 .97444	11.691	5.392	1.54 -0.85	4
401	1502E 22046	Gambart K	16 . 24458	12. 06845	118 .96723	14.190	3,924	2.00 +0.03	5
402	1502D 22061*	Gambart	. 26222	. 01 65 6	53 .96483	15.204	0,948	. 89 -0.06	4
403	1497 22065*	Gambart L	. 26263	. 05732	37 • 96357	15.246	3. 284	. 62 +0. 63	10
404	1502C 22090	Gambart F	. 29092	$.00205^{4}$	34 .95660	16.915	0.117	. 57 -0. 24	6
405	1501A 22102	Schröter M	. 20041	.12102	40 . 97223	11.647	6.950	.67 +0.03	9
406	22136	Stadius K	. 23193	5 .16807	36 .95765	13.614	9.679	. 61 -0. 75	5
407	1467N 22162*	Copernicus C	.26357	.12424	87 .95675	15.402	7.135	1.45 +0.24	10
408	1485 22166	Stadius N	. 26564	.16378	49 .94916	15.635	9.434	.82 -1.48	6
409	1467L 22184	Copernicus R	.28589	13	105 .94733	16.793	8.071	1.73 -0.99	4
410	22209*	Eratosth. C	. 20476	. 29047	.93439	12.360	16.891	. 84 -0. 53	10
411	1283C 22220*	Stadius B	. 22993	. 20541	38 .95105	13.591	11.856	. 62 -0. 38	11
412	1467 22441* 1207	Timochar, A	. 23983	. 41989	. 87460	15.334	24.844	.56 -1.08	19
	1297		/	7	60			.91	

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
_			-	+	+	-	+		
413	22461 1298C	Timochar. E	. 26730 9	.41663 9	. 86848 77	17.107	24.631	-0.62 1.16	6
414	22511* 1298D	Timochar. F	. 21759	. 51907	. 82610 29	14.756	31.283	-0.68	20
415	22534* 1394	Carlini D	.23093	. 54412	. 80568 58	15.993	32.992	-1.29 .81	21
416	22617* 1303	Le Verrier E	. 21538	. 67366	. 70601	16.965	42.385	-1.17	14
417	22631*	Le Verrier A	. 23365	. 61740	41 . 75105	17.280	38.129	.50 -0.13	15
418	1304B 22664*	Le Verrier	. 26768	. 64685	39 . 71325	20. 570	40.333	.50 -1.05	6
419	1304 22681	Helicon B	. 28556	. 61463	87 . 73363	21.268	37.980	1.08 -2.15	14
420	1300 22694	Helicon	13 . 29794	13 . 64782	105 . 70148	23.012	40.364	1.34 +0.44	5
421	1299 22728	Laplace L	. 22204	11 .78417	106 . 57803	21.013	51.704	1.29 -1.44	8
422	1319C 22731*	Laplace F	.23742	10. 71284	. 65858	19.824	45.517	.79 -1.53	16
423	1321 22749A	Condamine Q	. 24594	. 79398	42 . 55498	23.900	52.600	. 48 -0.96	8
424	22767*	Maupertuis A	. 26484	. 77311	. 57393	24.770	50, 730	. 64 - 2. 40	11
425	1381 22793	Laplace D	16 29241 .	16 .73388	143 . 61242	25. 522	47.239	1.43 -0.75	13
426	1318 22801*	Condamine R	. 20798	. 81822	73 . 53504	21.242	54.947	. 78 -0. 86	6
427	1368M 22819A*	Fontenelle N	10 . 21682	10. 89813	78 . 37963	29.732	64.044	.72 -1.94	7
428	1328G 22826	Fontenelle X	. 22908	. 86966	46 . 43524	27.759	60.509	.30	6
429	22838	J. Herschel R	. 23488	. 88622	46 . 39679	30. 623	62.512	.35	5
430	1682H 22855	Condamine T	. 25295	10 . 85864	112	29.641	59.219	.77	6
431	22861	Condamine M	. 26215	. 81001	. 52186	26.672	54.209	. 49 - 2. 45	6
432	1368I 22874	Condamine F	. 27763	. 84119	38 . 45984	31.121	57.439	. 34 - 3. 36	14
433	1368E 22875*	Condamine B	. 27103	12 . 85518	107 . 43893	31.696	58.900	. 86 - 2. 22	4
434	1367 22891*	Condamine A	. 29229	. 81 302	98 . 50011	30. 304	54.530	. 75 - 3. 00	10
435	1366 22895	J. Herschel F	17 . 29976	17 .85501	160 . 41648	35.744	59.029	1.39 -4.91	5
436	1682 22898	J. Herschel C	16 29843	16 .88498	181 . 35552	40.010	62.323	1.31 -1.18	6
437	1679 22900*	Fontenelle F	13 20379	13 .90100	126 .38128	28.124	64.366	.78 -1.12	5
438	1328A 22901*	Anaximenes E	11 . 20754	11 .91680	120 . 33947	31.440	66.539	.80 -1.01	9
439	1359C 23021*	Gambart A	10 . 32091	10 .01715	81 .94676	18.724	0.982	. 48 -0, 32	29
440	1498 23065*	Reinhold F	3 .36414	3 . 05901	27 .92887	21.406	3. 384	.44 -0.97	6
441	1512E 23112*	Copernic. H	10 .31096	10 .12024	82 94297	18.250	6.904	1.32 +0.30	19
442	1486D 23140	Fauth	4 . 34151	4 . 10932	28 .93347	20,095	6. 276	.46 -0.05	4
443	1482 23176	Copernic. JD	5 . 37313	5 .16767	51 .91131	22. 266	9.662	.83 -1.89	6
444	23213	Gay-Lussac G	12 . 31350	12 . 23948	110 .91815	18.852	13.865	1.74 -1.19	5
445	1439D 23224	Gay-Lussac F	7 . 32562	6 . 24234	49 . 91354	19.617	14.029	. 78 - 0. 60	5
446	1439C 23249*	Draper C	7 . 34981	7 . 29354	68 . 88940	21.470	17.073	1.08 -0.38	18
447	1412 23310	Pytheas B	4 . 31589	4 . 30065	30 89867.	19.366	17.516	.46 -1.93	6
448	1408 23325*	Pytheas	. 32890	9 . 35140	71 87662,	20. 565	20. 571	1.11 +0.10	7
449	1406 23344	Pytheas A	. 34627	9 . 34954	90 . 87002	21.702	20,469	1.37 -0.85	11
-	1407	-	6	6	48			. 73	

	B & M	Designation	Е	F +	G +	Long	Lat +	н	Pl.
450	23350	Draper	. 35277	. 30202	. 86636	21.702	17.567	+1.13	6
	1411	-	5	5	49			. 74	
451	23446 1399A	La Hire B	. 34579	. 46459	. 81382	23, 020	27.718	-1.98 1.87	4
452	23447* 1399	La Hire A	. 34902	. 47734	. 80679 57	23. 393	28.502	+0.50	19
453	23500* 1392	Carlini B	. 30682	.50554 6	. 80636 47	20, 831	30.368	-0.06 .66	10
454	23535* 1390	Carlini	. 33890 5	. 55517 5	. 75909 36	24.058	33, 736	-0.62 .48	28
455	23567* 1391	Carlini A	.36470 8	. 57832 8	. 72823 69	26.601	35.377	-1.93 .87	19
456	23629* 1315	Laplace A	. 32637 10	. 69077 10	. 64358 79	26.890	43.749	-1.85 .88	20
457	23708*	Maupertuis L	. 30496 8	. 78018 8	. 54461 66	29.247	51.338	-1.49 .63	10
458	23709 1368B	Condamine C	. 30737 14	.79175 14	. 52716 158	30.245	52.377	-0.66 1.45	4
459	23739 1672	Bouguer A	. 33797	. 79325	. 50666	33, 705	52.483	+0.15	6
460	23759 1671	Bouguer	. 35758	. 79081	. 49232	35.991	52.424	- 3. 81	10
461	23800	Condamine D	17 . 30464	17 . 80315	$162 \\ .51122 \\ .02$	30.790	53.463	1.39 -0.70	6
462	23855	Horrebow B	. 35320	11 . 85444	106 . 38194	42.761	58.665	.94 +0.60	5
463	1678 23874	South B	. 37914	. 84304	. 37927	44.990	57.538	. 39 -1.47	10
464	1706B 24140*	Hortensius C	14 . 44674	14 . 10361	128 .88846	26.694	5.948	. 84 -0. 28	14
465	1522 24161*	Hortensius	4 . 46593	4 . 11308	35 . 87833	27.944	6.488	.54 +1.16	8
466	1519 24197*	Milichius	7 . 49501	7 .17407	62 . 85149	30.171	10.022	.95 +0.32	27
467	1529 24221	T. Mayer C	2 . 42803	2 . 21199	20 . 87946	25.952	12.229	.30 +1.39	6
468	1418 24224	T. Mayer Z	4 . 42672	4 . 24533	41 .87111	26.098	14.193	. 63 +0. 96	4
469	1421 24227	T. Mayer E	6 . 42353	6 . 27668	41 . 86308	26.138	16.055	. 62 +0. 73	4
470	1420 24241*	T. Mayer D	14	13 . 21 208	117	26. 763	12.243	1.75 +0.08	10
471	1419 24256	T. Mayer A	. 45709	. 26359	37 . 84953	28, 282	15.282	.56 +0.10	10
472	1416 24272	T. Mayer F	. 43707 14 . 47108	. 20009 14 . 22318	128 . 85322	28.903	12.897	1.89 -0.25	5
473	1420A 24296	T. Mayer B	10	. 22318 10 . 26489	. 83322 89 . 82663			1.32	
	1417	·	. 49492	6	94	30.909	15.372	-1.36 1.35	4
474	-	(bright spot)	. 41741	. 38905	. 81939	26.994	22.931	-2.62 1.98	4
475	24349* 1583	Euler	. 44716	. 39524	. 80090	29.175	23.310	-2.08 1.46	5
476	24468* 1591	Diophantus B	. 46917	. 48569	. 73697	32. 481	29.071	-0.75	15
477	24496 1589	Diophantus	. 49852 14	. 46379 14	. 73206 149	34.254	27.638	-0.40 1.90	9
478	24526* 1602	C. Herschel	. 42706 10	.56587 10	. 70360 121	31.256	34.509	-2.05 1.48	5
479	24532* 1600	Heis D	. 43894 11	.52446 12	. 72790 116	31.090	31.674	-2.12 1.47	7
480	24620 1604	C. Herschel C	. 42840	. 60426	: 66952 80	32.613	37.242	-2.68	7
481	24671* 1614	Mairan E	. 47718	. 61 24 4 5	. 62870 38	37.198	37.809	-1.70	23
482	24753* 1635	Sharp A	. 4561 2 9	. 73814	. 49477	42.672	47.645	- 2. 00 . 61	21
483	24783* 1636	Sharp B	. 48501 22	. 73084 22	. 47433	45.637	47.131	-4.92 1.72	9
484	24802 1666	Harpalus C	.40051 13	. 82406 13	. 39945	45.075	55.333	-0.83 .80	5
485	25007* 1520	Hortensius A	. 50894	.07643	. 85707	30, 702	4.384	-0.49	19
486	25010* 2481	Lansberg A	5 51640 3	.00340 3	44 . 85610 26	31.098	0.194	. 66 -0. 36 . 39	26

331

	B & M	Designation	Е	F	G	Long	Lat	Н	P1.
407	25001*	Encles C	-	+	+	-	+	0.11	1.2
487	25091* 1542D	Encke C	. 59285	.01197	. 80498	36.372	0.686	-0.41	12
488	25094 1539	Encke B	. 59753 9	.04144 9	. 79872 88	36.800	2.378	-2.86 1.22	12
489	25126* 1530	Milichius A	. 52303	.16119	. 83749 75	31.985	9.271	+0.81	12
490	25182* 1555	Kepler A	. 58407 8	.12453	. 80199 70	36.064	7.154	-0.14	12
491	25285 1572	Bessarion	. 58528	. 25616	. 76811	37.306	14.856	-1.60 1.39	10
492	25304*	Brayley D	. 50921	. 34251	104 . 78954	32.819	20.030	-0.02	11
493	1581 25325*	Brayley B	. 52633	. 35386	38 . 77026	34.345	20. 772	. 52 - 3. 88	11
494	1579 25365*	Brayley	. 56046	12 . 35679	120 .74575	36.926	20.929	1.60 -2.12	12
495	1578 25396A	Brayley C	. 59098	. 36475	85 . 71978	39.387	21.387	1.10 +0.33	6
496	1580 25401	Euler E	7 . 50809	7 . 41773	64 . 75219	34.038	24.711	.80 -1.35	4
497	1584 25426	Diophantus A	. 52780	8 . 46330	69 . 71222	36.540	27. 593	.90 +0.41	4
498	1590 25479	Angstrom	7 . 57521	7 . 49792	61 . 64658	41.656	29.914	. 75 - 2. 73	8
499	1737 25508	Gruithuis. B	14 . 50769	14 . 58236	127 . 63339	38.713	35.656	1.43 -1.67	6
500	1606 25534*	Gruithuisen	.53616	8 . 54269	73 .64256	39.842	32,962	. 80 - 4. 47	8
501	1605 25635	Mairan D	18 .53791	18 . 65536	170 .52778	45.544	41.011	1.90 -2.26	4
502	1613 25685*	Mairan G	15	15	128	50.775	40.889	1.17 -2.01	9
502	1613B 26040*	Encke E	. 64417	. 00636	40 . 76380	40.143	0. 364	. 33 -1. 40	18
	1540		7	7	64		4.915	.85	10
504	26048* 1542B	Maestlin	. 64876	.08565	. 75561 102	40.649		1.34	9
505	26088* 1542A	Maestlin H	. 68582	.08110	. 72224	43.518	4.655	-1.25	
506	26157* 1557	Kepler C	. 65591 8	.17428 8	. 73269 70	41.835	10.049	-2.24	16
507	26199* 1817	Marius D	. 69262 9	.19779 9	.69184 85	45.032	11.422	-2.18 1.02	8
508	26219* 1573	Bessarion A	.61131 13	. 29352 13	$\begin{array}{r} .73177\\ 132 \end{array}$	39.874	17.109	-4.05 1.68	12
509	26257* 1575	Bessarion C	. 64977 5	. 27610	. 70687 39	42.589	16.043	-1.65 .48	11
510	26323 1576	Bessarion D	. 62531 15	. 33847	. 70204 131	41.691	19.799	-1.36 1.60	7
511	26520* 1736	Wollaston	. 62789 12	. 50847 12	.58656 100	46.949	30.615	-2.75	13
512	26562* 1739	Wollaston C	.66604 13	. 52661 13	. 52481 112	51.763	31.841	-3.17	8
513	26652*	Rümker E	.65445 23	. 62381 22	. 42343 203	57.097	38.669	- 2. 84 1. 49	6
514	1880A 26690	Naumann B	. 69064	. 60738	. 38637	60.775	37.506	-4.20 .99	6
515	1877 27002*	Suess F	. 70227	17 .02046	148 . 71097	44.647	1.172	-0.80	5
516	1837 27028	Suess D	. 72291	.08151	57 . 68556	46.519	4.677	. 70 -0. 66	4
517	1836 27037*	Suess	. 73637	. 07613	68 . 67074	47.670	4.370	.81 -1.80	9
518	1835A 27039	Suess B	15 . 73136	15 .09880	132 . 67407	47.334	5.672	1.54 -0.85	4
519	1834 27063*	Reiner E	.76016	.03335	94 . 64798	49.554	1.912	1.10 -1.01	9
520	1838 27086	Reiner C	5 . 77984	5 . 061 39	41 . 62070	51.482	3.524	. 46 - 2. 44	10
521	1835 27078	Reiner A	11 . 77810	11 .08977	103 . 62018	51.443	5.155	1.11 -1.63	22
522	1833 27137	Marius V	7 . 73459	7 .17150	53 .65512	48.272	9.883	.57 -1.55	4
523	27208	Marius B	14 . 70429	14 . 281 25	126 . 64991	47. 299	16.355	1.43 -2.17	10
	1815		14	14	124			1.40	

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
			-	+	+	-	+		
524	27213	Marius CB	. 71045	. 23882	. 66034 36	47.093	13.832	-1.89 .41	4
525	27214 1816	Marius C	. 71599	. 24185	. 65254 44	47.654	14.017	- 2. 66 . 50	4
526	27270* 1818	Marius E	. 77666 12	. 21032	. 59279 100	52.647	12.148	-1.01 1.03	14
527	27289*	Marius M	. 78006 13	. 29862 13	. 54617	55.001	17.410	-3.51 1.02	15
528	27336* 1806	Herodotus A	. 73299	. 36673	. 56997	52.131	21.552	- 2. 93	15
529	27358	Herodotus B	. 75901 21	. 38364 21	. 52387 193	55.386	22.586	-1.99	7
530	1807 27534 1869	Lichtenb. B	. 73233	. 54776 24	. 39497 221	61.660	33. 357	- 6. 66 1. 52	4
531	28103	Reiner L	. 80666 10	.13884	. 57221 92	54.649	7.991	- 2. 26	4
532	28112* 1832	Reiner	. 81 21 1 21	. 1 21 30	. 56622	55.114	6.985	-4.49 2.06	7
533	28178* 1843	Galilaei	. 87351 17	. 18187 20	. 44989	62.749	10.486	-1.31 1.79	4
534	28194	Cavalerius F	. 89884 20	. 14083	. 41233 178	65.357	8.105	-1.94 1.28	4
535	28254 1846B	Galilaei E	. 85473 27	. 24087	. 45852	61.788	13.946	-1.02 1.83	6
536	28270*	Galilaei A	. 87148	. 20276	. 44363	63.021	11.713	- 2. 26 . 39	20
537	1844 28319	Schiapar. A	. 81239	. 38992	. 43069	62.069	22.979	-2.17	4
538	1812 29024*	Hevelius A	14 .92646	14 .04975	. 37049	68.203	2.854	-1.68	5
539	1959 29061*	Riccioli H	.96567	. 01996	55 . 25751	75.068	1.144	-0.67	4
540	1966 29109*	Galilaei B	16 .90487	17 . 19833	149 . 37253	67.623	11.457	. 67 - 2. 69	6
541	1845 29151* 1929	Olbers B	16 . 95492 25	16 .11928 26	142 . 26994 271	74. 215	6. 854	.92 -0.90 1.27	4

End of Quadrant II

	B & M	Designation	E -	F -	G +	Long	Lat -	Н	Pl.
542	30000	Oppolzer A	.00577	. 00802	1.00062	0. 330	0.459	+1.16	6
543	2951A 30015*	Réaumur X	5 . 01097	6 . 05027	41 . 99921	0. 629	2. 879	. 71 +0.93	16
544	30035	Spörer A	5 . 03579	. 05938	37 .99788	2. 054	3. 403	. 64 +0. 50	8
545	2945A 30043	Flammar. A	. 04326	5 . 03367	41	2. 478	1.927	.71 +1.46	12
546	2950A 30051	Mösting L	7 . 05959	8 . 01149	63 99855 -	3.415	0.658	1.09 +0.68	5
547	30058*	Herschel C	5 . 05495	5 . 08675	36 . 99579	3.158	4.971	.63 +1.86	23
548	2947 30063	Flammar. C	5 . 06509	5 . 03468	40 . 99783	3. 732	1.986	. 69 +0. 96	11
549	2950C 30077	Flammar. B	4 . 07908	4 . 06997	29 . 99455	4.546	4.011	. 50 +0. 24	14
550	2950B 30080*	Mösting D	4 . 08893	4 . 00600	34 . 99619	5.101	0. 343	. 59 +0. 29	7
551	2936A 30095*	Mösting A	. 09000	6 . 05548	45 . 99463	5.170	3.179	. 78 +0. 40	35
552	2933 30099A	Lalande NA	. 09893	.09272	20 . 99060	5.703	5.320	. 35 -0. 28	6
553	30099	Lalande N	. 09921	. 09665	60 .99105	5.716	5.542	1.03 +1.18	11
554	2920A 30108	Ptolemaeus S	. 00877	.18250	27 .98398	0.510	10. 506	.46 +1.39	6
555	2970G 30114* 2963	Ptolemaeus A	. 01 39 2	.14756	.98928	0.806	8,482	. 84 +0. 56	32
556	30144 2966	Ptolemaeus D	. 04442	.14319	22 .98865	2. 572	8.232	. 38 -0. 08	6
557	301 62 29 66A	Ptolemaeus O	. 06202	. 1 2567	37 .99203	3. 577	7.205	. 64 +3. 27	7
558	30165 2970D	Ptolemaeus L	. 06877	. 15323	59 . 98658 32	3.987	8.807	1.02 +1.34	11
559	30171 2949B	Herschel J	. 07396	. 11126	.99242 62	4.262	6.379	. 55 +2. 38	7
560	301 84 2970C	Ptolemaeus K	. 08049	.14270 12	.98796	4.657	8.192	1.07 +2.52 1.94	5
561	30186*	Ptolemaeus JA	. 08657	. 16596	. 98256	5.035	9.550	+0.40	13
562	30191	Ptolemaeus HA	. 09028	.11865	. 98921 51	5.214	6. 811	+0.66 .88	6
563	30192A	Ptolemaeus HB	. 09321	.12857	.98788	5.390	7.382	+0.98 .72	9
564	30196* 2970B	Ptolemaeus J	. 09236	.16710 5	.98157 36	5.375	9.619	-0.06	11
565	30206* 2992A	Alphonsus H	. 00843	. 26858	.96346 29	0. 501	15.576	+0.40	13
566	30235 2987	Alphonsus A	.03787	. 25581	.96569 87	2.245	14.825	-0.49 1.46	4
567	30249* 3042	Arzachel B	.04938	. 29279 7	. 95553 64	2.958	17.014	+1.04 1.06	7
568	30251 2987A	Alphonsus G	.05743	. 21317 5	.97543 35	3.369	12.306	+0.18	10
569	30320 3041	Arzachel A	. 02458 5	. 30903 5	.94967 38	1.482	18.019	-1.76 .63	9
570	30321 3042B	Arzachel K	.02656 9	. 31425 8	.94884 72	1.603	18.317	-0.21 1.19	5
571	30328 3086	Purbach D	. 02486	. 38822	.92201 42	1.544	22.826	+1.25 .67	9
572	30360 3043	Arzachel C	. 06127 6	. 29993	.95270 55	3. 679	17.441	+1.17 .91	4
573	30366 3070A	Thebit C	.06648	. 36196	.92972 44	4.089	21.222	-0.16	7
574	30376* 3071	Thebit A	. 07928	. 36719	.92794 82	4.883	21.517	+1.90	14
575 576	30379 3073	Thebit E	. 07416	. 39189	.91715	4. 622	23.069	+0. 21	11
576 577	30401 3089 30411	Purbach F	. 00009 6 01411	. 41577 6	.91000	0.006	24, 554	+0.84	12
577 578	30411 '3089A 30412	Purbach T Purbach X	.01411	. 41666	.90875	0.889	24.628	-0.32 .68	12
578 579	30412 - 30416*	Regiomont. A	. 01821 5 . 01026	. 42811 5 . 46930	.90178 54 88230	1.156	25. 390	-2.77 .85	4
517	3101	Negromont, A	. 01020	. 40930 4	. 88239 37	0.666	28.004	-0.90 .57	5

	B & M	Designation	E -	F	G +	Long -	Lat -	Н	Pl.
580	30424*	Purbach A	. 02985	. 43995	. 89705	1.905	26.112	-0.74	14
581	3083 30440	Purbach GA	5 .04411	5 . 40915	35 .91094	2, 772	24.162	. 55 -0. 73	4
582	- 30454A	Purbach P	11 . 05751	11 . 44543	109 . 89322	3.683	26.457	1.72 -0.38	4
583	3091B 30458	Regiomont. B	9 . 05672	9 . 48518	90 . 87295	3.717	29.013	1.40 +0.57	4
584	3102 30461	Purbach O	9 . 06085	9 . 41901	86 .90780	3.834	24.727	1.31 +2.93	8
585	3090A 30465*	Purbach B	. 06572	5 . 45290	37	4. 227	26.931	. 58 -0. 09	9
586	3084 30472	Purbach K	.07169	6 . 42511	54 . 90225	4.453	25.158	. 83 -0. 07	5
587	3092 30484	Purbach N	. 08385	8.44194	70 . 89306	5.363	26. 229	1.10 -0.09	4
588	3091A 30478*	Regiomont. C	.00000 10 .07962	10 . 48042	. 87402	5, 205	28.696	1.37 +0.91	5
589	3088 30497*	Regiomont. E	.07502 6 .09545	. 47260	. 87591	6. 219	28, 208	. 85	21
590	3103 30505	Walter N	.00279	. 55399	25 . 83166	0.192	33.668	.38	12
	3466B 30562		5	. 53399 5 . 54346	. 83100 36 . 83614	4. 428	32,944	. 52	4
591	(3473A)	Hell QA	.06476	4	45			-1.15	
592	305 <i>6</i> 9 3123E	Lexell H	.06765	. 59488	. 80027	4.831	36. 527	-0.96	5
593	30575 3112A	Hell K	.07609	. 55944	. 82515 85	5.268	34.024	-0.32 1.22	4
594	30579 3123C	Lexell F	. 07483	. 59488	. 80116	5.336	36.475	+1.16	7
595	30586* 3116	Hell E	.08834 4	. 56704 4	. 81875 32	6.158	34.550	-0.27 .46	13
596	30589 3142	Sasserides D	.08962 8	. 59797 8	. 79642 73	6.420	36. 727	-0.10 1.01	4
597	30609* 3165	Saussure A	.00636 8	. 69114 8	. 72012 64	0.506	43.822	- 3. 23 . 80	6
598	30610 3124	Lexell A	.01873	. 59981 9	. 79869 86	1.343	36.898	-1.71 1.19	4
599	30633 3152A	Orontius A	. 03461 5	. 629 62	. 77579 35	2.554	39.034	-0.46	12
600	30643	-	.04601 7	. 63897 7	. 76662 53	3.434	39.760	-1.65	10
601	30683* 3154	Orontius D	. 08281	. 63421	. 76749 75	6.158	39.405	-1.63 1.00	8
602	30684 3146	Sasserides L	.08769	. 64279	. 76126 56	6.570	39.990	+0.33	9
603	30691 3144B	Sasserides M	. 09 65 8	. 61437	. 78294	7.032	37.911	-0.20 1.10	5
604	30692A 3144C	Sasserides N	. 09522	. 62472	. 77531	7.001	38.651	+0.39	4
605	30732	-	.03489 12	. 72357	. 69108 131	2.890	46. 279	+2.05 1.57	4
606	30734	-	.03409	14 . 74275 13	. 66933 126	2.915	47.939	+0.73	4
607	30745	-	.04230	. 75827	. 649 65	3. 725	49.351	-1.04	18
608	30755*	Maginus A	10 . 05028	10 . 75111	81 . 65551	4.386	48.804	.92 -3.14	5
609	3204 30771	Proctor D	.07272	. 71966	55 . 69027	6.013	46.036	. 63 -0. 28	4
610	3213D 30772*	Proctor B	17 .07990	14 . 72471	135 . 68637	6. 639	46.363	1.62 +2.33	4
611	3213B 30779	Maginus T	23 . 07515	21 . 79112	163. 60612	7.067	52. 331	1.94 -0.96	4
61 2	3211A 30785	Maginus V	$16 \\ .08337$	16 . 75705	157 . 64483	7.336	49.342	1.65 -3.58	4
613	3214B 30798*	Maginus Y	. 09774	. 78586	$.609\frac{99}{68}$	9.107	51.842	1.11 -1.01	10
614	3212A 30817	Deluc W	.01517	. 87925	70 . 47477	1.830	61.619	.74 -1.11	8
615	3225A 30821 A	Deluc H	14 . 02079	14 . 80998	101 . 58413	2.038	54.184	.83 -1.99	6
616	3226 30823*	Deluc D	. 02296	. 83193	97 . 55275	2.378	56.376	.98 -1.59	8
617	3222 30822	Deluc T	10 . 03008	10 . 82729	93 . 56108	3.068	55.816	. 89 +0. 11	5
	3222A		10	10	92			.90	

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
			-	-	+	-	-		
618	30836 3223	Deluc E	$.03731 \\ 10$	$.86835 \\ 10$. 49327	4.325	60.330	-1.10	5
619	-		.03787	.85916	.50982	4.248	59.246	-0.43	4
620	30881 3234B	Clavius BB	. 08671	.81322	$159 \\ .57538 \\ 79$	8.570	54.415	1.41 - 0.08.79	5
621	30898*	Rutherfurd A	. 09579	. 88515	. 45679	11.843	62.198	+1.15	8
622	3233A 30900* 3268	Cysatus A	.00621	.90043 20	$\begin{smallmatrix}&&143\\.&43534\\&177\end{smallmatrix}$	0.817	64.194	1.14 + 0.29	13
623	30941	Cysatus	.04338	.91359	. 40144	6.167	66.156	1.34 - 2.01	4
624	3267 31001 2932	Mösting	. 10173	.01160	.99386	5.844	0.665	. 60 -1.53	11
625	31019*	Lalande C	.11923	.09696	.98849	6.877	5.562	1.49 + 0.63	21
626	2920 31024 2934	Mösting B	. 1 2808	.04700	.99021	7.367	2.695	. 70 - 0. 76	9
627	31025	Mosting BA	.12773	.05159	.99079 41	7.345	2.956	. 69 +0. 56 . 71	9
628	31043* * 2935	Mösting C	.14040	. 03107	.98981	8.073	1.780	+0.35 .84	23
629	31047 2917	Lalande	.14905	. 07700	.98629	8.593	4.414	+0.79	11
630	31055*	Lalande B	.15618	.05410	73 .98578	9.002	3.102	1.25 - 0.80	12
631	2919 31081	Turner B	.18370	.01646	.98241	10.591	0.943	-0.74	6
632	31115A	Palisa A	.11545	.15691	47 .98160	6.707	9.020	+1.29	10
633	3006A 31115* 3008A	Palisa D	.11834	.15045	.98134	6.876	8.654	-0.29	6
634	31120 2921	Lalande D	.12878	.10729	$.98511 \\ 89$	7.447	6.163	$1.16 - 1.27 \\ 1.52$	11
635	31126* 3011	Palisa P	.12589	.16733	.97791 24	7.335	9.631	+0.13 +1.32 +0.13 .41	15
636	31158 3005	Davy B	.15209	.18831	$.970\overline{64}$ 46	8,905	10.850	+0. 64	13
637	31161* 2918	Lalande A	.16867	.11506	.97825	9.782	6.611	-1.16 1.19	18
638	31216* 3028	Alpetrag. B	.11495	. 26022	.95850 34	6.838	15.085	-0.30	23
639	31227 3025	Lassell B	.12804 10	$.27846 \\ 10$.95170	7.662	16.171	-0.29 1.72	4
640	31231* 3004	Davy A	.13137 12	.21140 13	.96724 114	7.734	12.219	-2.17 1.92	14
641	31255* 3029	Lassell C	.15689	. 25252	.95501 85	9.329	14.623	$^{+0.37}_{1.41}$	6
642	31290* 2856	Guerike C	.19583	. 19975	.96007 21	11.528	11.522	-0.01	31
643	31300* 3031A	Alpetrag. H	.10047	. 30821	.94534	6.066	17.962	-1.08	19
644	31333 3072	Thebit D	.13462	. 33754	.93104	8.227	19.738	-0.96	11
645	31338 3063	Birt	.13735	. 37951	.91402	8.545	22.323	-1.46 1.27	15
646	31338A 3064	Birt A	.13145	. 38160	.91335 87	8.189	22.467	-2.52 1.38	4
647	31361* 3022	Lassell E	.16780	. 31 200 5	.93489 44	10.175	18.184	-0.42	19
648	31367 3065	Birt B	.16418 5	. 37821 5	.91006 37	10.226	22, 243	-1.56 .59	12
649	31454 3066B	Lippershey R	.15718	.44836	. 87875	10.141	26.668	-1.80 .93	5
650	31463* 3066A	Lippershey	.16122	. 43645	. 88338 24	10.342	25.921	-2.75 .37	6
651	31472* 3066C	Lippershey T	.17385	. 42609	. 88690 68	11.090	25.241	-1.42 1.05	22
652	31513 3109	Hell	.11387	. 53482	. 83545	7.761	32.386	-2.63	5
653	31567* 2748	Gauricus D	.16204	. 57509	. 80331	11.404	35.059	+1.99	9
654	31583 2744D	Gauricus N	.18571	. 53574	. 82438	12.695	32.373	+0.96	9
655	31587 2745A	Gauricus R	.18850	. 57106	. 80002 79	13.258	34.790	+1.45 1.10	4

	B & M	Designation	E -	F -	G +	Long	Lat -	Н	P1.
656	31592*	Pitatus A	. 19457	. 52078	. 83095	13.178	31.392	-0.39	7
657	2784A 31606	Picter N	7 .10643	7 . 66269	59 .74076	8.176	41.525	. 85 - 0. 69	5
658	3181 31610	Ball F	10	10	93 . 79273	8, 431	36.847	1.20 +2.52	4
659	3136A 31643*	Sasserides B	10	10 . 63589	92 . 75871	11.151	39.430	1.27 +2.05	9
660	3139A 31691*	Heinsius G	10 . 19724	10	75 . 76020	14.545	38.230	. 99 -0. 34	11
661	3190 31703	Street A	.10723	6 .73078	43	9.053	46.999	.57	4
662	3196 31705	Maginus L	13	13 . 75620	119	8.917	49.221	1.39 -2.38	6
663	3215 31706	Maginus M	10	10	92 , 62922	9.308	50.341	1.03 -1.61	6
664	3215A 31707	Maginus CB	.10333	10	. 621 29	9.442	50.964	.96 +0.07	5
665	3206F 31709	Maginus H	13	13 . 79262	122	10.032	52. 443	1.32	8
666	3212 31715A*	Maginus NA	.11234	. 75051	. 65312 . 65312	9.759	48.555	.74 +2.13	10
667	3211B 31748	Clavius G	.14836	. 78739	61 . 59 678	13.960	52.010	. 69 -1. 62	7
	2713		6	7	. 68623	12.958	45. 307	. 64 +2, 14	, 6
668	31751* 3186C	Tycho P	.15790	.71177	92			1.10	
669	31755 3190D	Street J	.15569	. 75102	. 64174	13.636	48.675	+0.09	6
670	31774* 3198	Street C	.17604	. 74749	. 64051	15.367	48.373	-0.01	5
671	31790A* 3186A	Tycho H	. 19229	. 70944 9	. 67791 72	15.836	45.193	-0.14	10
672	31794 2711A	Brown A	.19953 9	.74460 9	. 63769 80	17.374	48.096	+0.77 .89	4
673	31801* 3251D	Clavius MC	. 10338	.81706 11	. 56753 87	10.372	54.772	+0.41 .86	12
674	31815 3236	Clavius D	. 11055 9	. 85338 10	. 50389 94	12.374	58.846	-4.89 .82	8
675	31813 3235B	Clavius CB	.11961	. 83905 11	. 52796 82	12.771	57.183	- 2. 81 . 75	10
676	31834 3235	Clavius C	. 1 3052	. 84318	. 51 677 74	14.174	57.701	-4.32	7
677	31850 3251A	Clavius R	. 15861	. 80039	. 57855 74	15.331	53.148	+0.43	12
678	31854 3241	Clavius N	. 15152	. 8415Ó 11	. 51372	16.433	57.523	-4.36	7
679	31864* 3237	Clavius J	. 16368	. 84696	. 501 35	18.080	58.089	- 3. 93 . 63	11
680	31866 3238	Clavius K	.16685	. 86883	. 46382 47	19.785	60.432	-1.88	5
681	31867*	Blancanus W	.16827	. 87345	. 45681	20. 221	60.866	-0.08	4
682	31890*	Longomont. C	10 . 19417	10 . 80294	. 56265	19.039	53.450	-0.88	5
683	2709 31901*	Gruemberg, C	.10804	.91163	.39350	15.352	65.885	. 50 - 2. 10	6
684	3263A 31955*	Casatus C	10 . 15319	.95024	. 264 64	30.064	72.162	. 53 - 3. 08	8
685	3292 31990*	Blancanus F	. 19315	. 90630	79 . 37240	27.414	65.161	. 36 - 2. 29	4
686	3257A 32015	Turner L	13 . 21740	. 05950	148 .97462	12.574	3.409	.96 +0.60	10
687	2922A 32022*	Turner	6 . 22847	. 02402	42 .97183	13.229	1.378	. 71 - 2. 41	14
688	2922 32024	Turner II	13. 22381	13	120 97289	12.955	2. 789	2.03 -0.89	5
689	2921A 32036	Turner K	. 23108	.06685	65 .96996	13.400	3. 835	1.10 - 1.14	5
690	2923A 32042*	Turner F	7 . 24353	7 . 02711	54 .96970	14.097	1.587	.91 +0.34	15
691	2923 32050	Gambart N	5 25727 .	5 .00910	43 •96588	14.914	0.521	. 72 -0. 70	6
692	1502F 32082	Fra Mauro W	6 . 28890	6 . 02269	44 .95666	16.803	1.300	. 74 -0. 72	6
693	32083	Fra Mauro G	6 . 28047 11	6 . 03819 11	46 .95986 94	16.288	2.187	.76 +1.26 1.56	9

	B & M	Designation	E -	F	G +	Long	Lat -	H	Pl.
694	32089	Fra Mauro P	. 28267	. 09437	. 95345	16.513	5.420	-1.85	4
695	32107*	Guerike E	7 . 20527	6 .17330	47 .96366	12.024	9.975	. 78 +0. 70	20
696	2858A 32153	Parry F	6 . 25178	6 . 13261	48 .95815	14.723	7.624	. 80 - 0. 84	6
697	2882B -	(bright spot)	7 . 26797	6 .14886	54 95305	15.704	8.551	.80 +1.97	6
698	32174	Parry E	13 . 27784	13 .14537	116 .94928	16.313	8.360	1.92 -0.47	5
699	2882A 32176*	Parry A	. 27093	4 .16475	32 94798.	15.949	9.486	. 53 -0. 68	8
700	2880 32180	Fra Mauro E	. 28717	. 10388	50 .95120	16.799	5.968	.82 -1.70	7
701	2900 32181	Fra Mauro F	$.28920^{6}$.11650	49 . 94929	16.943	6.695	.81 -1.42	4
702	2900A 32197 2972	Bonpland C	. 29511	.17696	41 .93990	17.431	10.183	.68 +1.58	9
703	2873 32199 2854	Guerike A	. 29089	. 19256	.93625	17.259	11.112	1.62 -1.51	6
704	32209 3023	Lassell F	. 20581	. 29386	80 .93243	12.446	17.105	$1.30 \\ -1.62 \\ -72$	8
705	32240* 2858	Guerike D	. 24636	. 20706	45 .94612 28	14.595	11.957	.73	15
706	32241 2858B	Guerike H	. 24042	. 21483	.94616 30	14.257	12.410	. 46 -0. 72	12
707	32254 2855A	Guerike G	. 25069	.24140	.93694	14.979	13.976	. 49 -0. 89 . 62	10
708	32283* 2839	Opelt K	. 28492	. 23457	.92890	17.052	13.572	-0.82 .45	13
709	32299* 2818	Opelt E	. 29314	. 29227	.91005	17.854	16.997	-0.40	20
710	32307* 3055	Nicollet	.19997 4	. 37267	.90491 35	12.461	21.906	-1.97 .55	27
711	32372A* 2819B	Gould P	. 27023	. 32206	.90649	16.599	18.802	-1.33	11
712	32372* 2819C	Gould A	. 27596	. 32827	. 90307 31	16.992	19.169	-0.48	10
713	32397 3058A	Wolf A	. 29246	. 37814	. 87741 49	18.434	22. 237	-1.42 .75	8
714	32404 2792A	Pitatus J	. 20924 5	. 44550 5	. 86966 39	13.528	26. 475	-1.25	10
715	32448 2780A	Hesiodus D	.24558 6	.48944 6	. 83592 47	16.371	29.325	-1.20 .68	11
716	32465* 2778	Hesiodus B	. 26749 8	. 45533 8	. 84879 73	17.491	27.096	-0.59 1.08	13
717	32482* 2806	Kies D	. 28765 4	. 42047 4	. 85981 31	18.497	24.880	-1.03 .46	26
718	32517 2756B	Wurzelb. C	. 21254	. 57340 8	. 79237 72	15.015	34.951	+1.57 .99	6
719	32518* 2754	Wurzelb. A	. 21527 6	.58357	. 78287 60	15.374	35.706	-0.19	5
720	32514	Wurzelb, W	. 22000	. 54033 8	. 81282	15.144	32.687	+0.90	4
721	32548 2756A	Wurzelb. E	. 24029	. 58280	. 77583	17.208	35.661	-0.60	4
722	32570 2766A	Weiss A	. 27519	. 50864	.81784	18, 597	30.517	+2.87	4
723	32574* 2762	Cichus B	. 27687	. 54663	. 78905	19.335	33.172	-1.68 1.54	4
724 725	32579 2760A	Cichus K Weiss E	. 27434 5 . 28125	. 59557 5 . 51607	. 75469 41 . 80754	19.976 19.202	36.563	-0.41 .54 -2.13	13
726	32581 2766 32618	Wilhelm O	. 28123 7 . 21578	. 51 007 7 . 68321	. 60734 66 . 69614	17. 221	31.111 43.150	-2.13 .93 -1.78	5 5
720	2726A 32629*	Wilhelm E	. 21378 8 . 22131	. 69649	. 68328	17.221	43.130	-1.78 .94 +0.82	3 9
728	2726 32629A	Wilhelm N	. 22958	. 69145	. 68604	18.502	43. 704	.88 +1.26	10
729	2732E 32638	Wilhelm Q	. 23018	. 68392	56 . 69122	18, 418	43.190	. 67 -1. 29	4
730	'2732D 32650	Heinsius H	12 . 25207	12 . 60803	110 . 75346	18.497	37.426	1.32 +0.82	4
731	2740D 32656	Wilhelm C	11 . 25050	11 . 66321	100	19.521	41.499	1.31 +1.57	4
	2724		7	7	67			. 82	

	B & M	Designation	E -	F -	G +	Long	Lat -	Н	Pl.
732	32657	Wilhelm W	. 25540	. 67514	. 69099	20. 285	42.504	-1.29	6
733	2727B 32663	Heinsius J	13. 26973	.63268	95 . 72603	20. 380	39.244	1.14 +0.14	11
734	32688*	Wilhelm B	. 28073	. 68774	57 . 66852	22. 778	43. 486	.72	6
735	2723 32687	Wilhelm F	. 28997	8 . 67351	78 . 67995	23.096	42.337	.91 +0.03	4
736	- 32705	Longomont. G	. 20893	12 . 75048	. 62495	18.485	48.715	1.17 -2.23	4
737	2716B 32710	Montanari W	. 21991	. 70404	. 67512	18.042	44.757	.99 -0.16	5
738	32749*	Longomont. A	. 24591	. 79746	31 . 55110	24.047	52.883	.36 +0.11	7
739	2707 32764 27164	Longomont. M	. 26016	. 74797	.60725	23. 191	48.547	. 65 - 3. 57	5
740	2716A 32760 2722	Wilhelm A	.26686	. 70264	103 . 65963	22.026	44.638	1.09 +0.02	6
741	2722 32765	Longomont. L	. 26219	. 75358	105 . 59909	23.636	49.048	1.20 -3.88	5
742	2716 32769* 2716D	Longomont. R	11 . 26941 8	11 . 79167 8	104. 54800	26.179	52.355	1.08 -0.32 .59	18
743	32790 2727A	Lagalla P	. 29105	. 70880	62 . 64245	24.372	45.141	-0.13 .66	8
744	32818* 2699A	Scheiner G	.21827	6 . 88709 7	59 . 40610 60	28.257	62.538	-0.44 .42	16
745	32836* 2693	Scheiner A	. 23279 12	.86796 12	. 43320 105	28. 252	60.464	-4.17	13
746	32931A 2698A	Scheiner L	. 23516	.91123	. 34478	35.085	65.821	-1.98	8
747	32980 2677	Kircher B	.28820	. 90606	. 30700 78	43.190	65.073	-1.52	4
748	33008 2901	Fra Mauro D	. 30089	. 08340	. 94915 47	17.589	4.787	-1.41 .78	8
749	33051	Gambart R	. 35518	. 01063	. 93502	20. 799	0.608	+0.46	5
750	33059* 2898	Fra Mauro A	. 35551	.09483	. 92981 56	20.924	5.441	-0.06	12
751	33067* 2899	Fra Mauro B	. 36783	. 069 68	.92686 36	21.645	3.997	-0.67 .58	19
752	33069 2898A	Fra Mauro C	.36721	.09433 10	.92533 77	21.645	5.412	-0.02 1.24	10
753	33107* 2874	Bonpland D	$.30798_{4}$.17573	.93467 31	18.237	10.124	-0.57	15
754	33176* 2874A	Bonpland E	. 37895	.16914	.90914 30	22. 628	9.744	-1.15 .47	15
755	33210 2874C	Bonpland G	. 31494	. 20056 5	.92687 41	18.767	11.578	-1.30 .66	7
756	33249 2837	Lubiniezky H	. 34495	. 291 60	. 89123 100	21.158	16.968	-1.47 1.55	12
757	33254* 2838	Darney J	. 35330	. 24717	. 90250 51	21.378	14.307	+0.36	20
758	33285* 2831	Darney	. 38597 7	. 25146 7	. 88669 63	23.523	14.575	-1.37 .97	13
759	33288 2833	Lubiniezky D	. 38103 5	. 28354 5	. 87926 46	23.429	16.482	-1.15 .70	8
760	33351* 2835	Lubiniezky F	. 35237	. 31 37ľ	. 88119 33	21.795	18.291	-0.80 .51	15
761	33428* 2804	Kies B	. 32652 10	. 48027	. 81308 76	21.879	28.728	-1.41 1.07	7
762	33447 2803	Kies A	. 339 67	. 47361 10	. 81230	22.692	28.276	-0.42 1.35	5
763	33438 2806A	Kies E	. 33941	. 48025 5	. 80882 40	22.764	28.701	+0.02	14
764	33507 2761	Cichus A	. 30025 10	. 57025 10	. 76392 101	21.456	34.789	-0.95 1.34	4
765	33510 2769	Cichus N	. 31798 13	. 50759 12	. 79877 107	21.706	30.557	- 2. 79 1. 49	4
766	33505* 2763	Cichus C	. 31005 7	. 55274 7	. 77558 65	21.789	33. 494	+2.76	21
767	33524 2763A	Cichus H	. 32090	. 54074 8	. 77659 70	22.451	32. 762	-1.33 .94	8
768	33556* 2554	Capuanus A	.35602 12	.56861 12	. 74272 109	25.610	34.619	+1.48 1.41	9

	B & M	Designation	E	F	G	Long	Lat	н	Pl.
			-	-	+	-	-		
769	33621 2559A	Haidinger J	. 32538	.61432	.71768 82	24.388	37.939	-1.45 1.02	7
770	33622 2560A	Haidinger A	. 32496	. 62401	. 71025	24.585	38.662	-0.48	4
771	33623A	Haidinger B	. 32020	. 631 83	.70576	24.403	39.189	1.18 - 0.14	8
772	2560B 33640	Capuanus M	. 34281	. 60762	. 71538	25, 603	37.450	.74 -1.31	4
773	2558E 33642	Capuanus L	. 34848	10 . 61955	88 . 70314	26.363	38. 290	1.09 -0.27	6
774	2558D 33650	Capuanus F	. 35838	. 60028	71 .71527	26.612	36. 881	. 87 +0. 33	4
775	2558A 33668	Epimenides A	.36529	. 6840 <u>7</u>	. 63009	30.102	43. 205	.81 -1.39	6
776	(2589) 33703	Lagalla T	. 30265	. 73499	82 . 60756	26.479	47.277	. 90 +0. 81	8
777	33718	Bayer A	.31568	12 . 77996	. 53876	30.367	51.319	.94 -1.52	5
778	2604A 33731	Mee C	. 33784	. 70997	60 . 61807	28.661	45.226	.56 +0.18	11
779	(2592C) 33756	Bayer K	16 . 35732	16 .76839	149 . 53012	33,981	50. 239	1.60 -0.76	5
780	2614 33773	Bayer L	13 . 37432	13 .73660	150 .56446	33. 550	47.401	1.38 +1.14	11
781	2614A 33781	Mee D	$^{14}_{.38205}$	14 . 71141	133 . 59038	32,907	45. 331	1.30 +0.53	5
782	(2592A) 33815*	Weigel A	6 . 31933	6 . 85288	55 . 40907	37.976	58.680	. 56 - 2. 86	9
783	2627 33836	Weigel C	24 . 33822	24 . 86080	229 . 37474	42.067	59.611	1.63 -3.65	4
784	2629 34017*	Euclides K	11 . 41628	12 .07309	143 .90595	24.678	4.192	. 93 - 0. 54	8
785	2464C 34074*	Lansberg B	5 . 47032	5 .04305	45 . 88142	28,084	2.467	. 71 - 0. 04	17
786	2482 34126*	Euclides D	6 . 42844	6 .16272	52 . 88832	25.747	9.368	.90 -0.72	16
787	2464 34168	Euclides M	9 . 46443	9 .18049	76 .86553	28. 217	10.411	1.17 -2.25	9
788	2464D 34182*	Euclides	12 . 48803	12	113 . 86384	29.464	7. 371	1.70 +0.75	14
789	2461 34211*	Darney E	12 . 41849	12	105	25. 382	12, 387	1.58 -0.81	11
790	2832B 34235	Darney D	4 . 43948	4. 24989	34 . 86145	27.028	14.488	. 52 - 2. 01	5
791	2832A 34282	Euclides C	. 48669	, 22920	79 . 84285	30.003	13. 251	1.18	12
792	2463 34290*	Euclides B	, 49343	. 20360	64 . 84547	30. 268	11.748	.94 -0,22	11
793	2462 34339*	Agatharch. A	. 43669	. 20000 12 . 39429	112 . 80947	28.345	23. 204	1.65 +1.22	13
793 794	2491 34386	0	. 43009 12 . 48801	. 39429 12 . 36606	. 80947 114 . 79244	28. 343 31. 626	23. 204 21. 471	+1.22 1.57 +0.10	4
	2491 A	Agatharch. B	12	12	101		29, 250	1.39	
795	34428 2527	Campanus B	. 42494	. 48847	. 761 67 75	29.157		-0.59	+
796	34433 2526	Campanus A	. 43029	. 43716	. 78844 50	28.623	25.952	-1.83	6
797	34490 2521	Hippalus A	. 49501 9	. 40293	. 76800	32.803	23.796	-2,42 1.12	6
798	34500* 2537	Mercator A	. 40068	. 50871	.76091	27.770	30.606	-1.46 1.67	5
799	34511 2565	Marth	. 41873	.51625	. 74551 89	29.321	31.121	-2.06 1.15	5
800	34527 2566	Ramsden G	. 42767	.57756 14	. 69478 135	31.614	35, 295	-0.70 1.63	9
801	34535*	Ramsden A	, 43406 6	. 55097	. 71278	31.361	33. 449	-0.72	10
802	34550 2562	Dunthorne	. 45412	. 50150	. 73688	31.644	30.087	+0.62	10
803	34591 2355	Vitello B	. 49559 18	. 51729 18	. 69840 174	35.359	31.134	+0.83 2.11	4
804	-	(bright spot)	. 40180 16	.68859 16	. 60530 138	33. 576	43.464	+1.73 1.45	5
805	34620 2588B	Hainzel K	. 42361 16	.60931 16	. 67049 156	32.284	37.533	+0.23 1.82	7
806	34695 2337A	Drebbel M	. 49775 11	. 65920 11	. 56373 97	41.443	41.236	+0.08 .95	5

	B & M	Designation	E -	F -	G +	Long -	Lat -	Н	Pl.
007	24712*	Schiller A	. 41447	. 73260	. 53952	37.532	47.118	-0.37	22
807	34713* 2598		6	. 74330	50 50 . 45719	46. 871	48.021	. 47 -0. 23	6
808	34784 2281 A	Nöggerath F	. 48807	6	59			. 47	-
809	34794* 2282	Nöggerath J	. 49229 9	. 74809 9	. 44401 91	47.951	48.453	-0.76 .70	4
810	35005 2483	Lansberg D	. 50824 6	.05197 6	. 85901 55	30. 611	2.980	-0.95 .82	6
811	35151* 2464B	Euclides F	. 55076 4	. 11037	. 82685 34	33.667	6.339	-0.70 .49	10
812	35216	Herigonius G	. 51 69 6	. 26264	. 81393 70	32, 421	15.236	-1.12 .99	4
813	35243*	Herigonius	. 54325	. 23019 12	. 80547 122	33.997	13.329	- 2. 70 1. 71	10
814	2425 35263	Herigonius E	. 56490	. 23803	. 78752	35. 652	13.798	-3.52 1.64	5
815	2426 35326	Gassendi OA	12. 52603	. 36174	120 .76994	34.341	21.202	+0.32	9
816	35356*	Gassendi J	. 55935	12 . 36756	100 . 74176	37.019	21.585	1.34 -1.58	29
817	2419 35385	Gassendi Y	. 58003	3. 35610	22 . 73378	38. 325	20.842	. 28 +1. 45	11
818	2424 35408*	Vitello E	8 . 509 69	9 . 48651	79 . 70844	35. 733	29.137	1.01 -1.42	7
819	2358 35433*	Puiseux D	6 . 53092	6 . 43347	59 . 72718	36.133	25. 707	.73 -1.25	18
820	2383 35491*	Doppelmay. J	7 . 59782	7 . 41399	63 . 68471	41.124	24.486	. 80 - 2. 08	10
821	2380A 35595	Doppelmay. W	4 . 59629	4 . 55275	30 . 58316	45.637	33. 533	.36 +1.02	4
822	35675	Drebbel	. 56994	. 65430	58	49.054	40.929	. 59 - 2. 21	6
	2330		. 50994 20 . 59783	21 . 61445	198 . 51476	49.269	37.913	1.70 -0.06	4
823	35691 2338	Drebbel D	5	5	42	50.851	40. 275	. 38 - 0. 63	5
824	35694 2342C	Drebbel L	. 59146 10	. 64623	. 48149			. 74	
825	35056	Flamsteed FA	. 651 64 14	.06003 14	. 75375 119	40.844	3.447	-3.15 1.56	9
826	36058* 2448	Flamsteed F	. 65459 9	. 08223	. 75023 75	41.105	4.721	-1.66 .98	16
827	36085	Flamsteed K	. 68892 13	.05386 13	. 72126 118	43.686	3.090	-1.98 1.48	5
828	36097* 2443	Flamsteed	. 69549 10	. 07781	. 71298 93	44.288	4.466	-1.65 1.15	10
829	36106	Letronne D	. 60419 5	.16360	. 77890 41	37.800	9.423	-1.31 .56	4
830	36113*	Wichmann	. 61064	.13056	. 77961 102	38.070	7.510	-1.98 1.38	13
831	2457 36122*	Wichmann B	. 62607	.12372	. 76866	39.162	7.113	-1.64	12
832	36173*	Flamsteed A	. 67401	.13663	. 725 <u>76</u>	42.882	7.854	. 43 -0. 27	13
833	2444 36180	Flamsteed B	. 68718	8 . 10294	77 . 71779	43. 751	5.914	.97 -1.71	9
834	2445 36211*	Letronne A	9 .61556	9 . 20988	81 . 75987	39.010	12.113	1.01 +0.32	4
835	2432	Gassendi Z	6 . 651 64	6 . 28270	55 . 70494	42.750	16.408	.73 +1.30	10
836	2396 36278*	Gassendi G	12 . 67185	12 . 28752	118 . 68136	44.597	16.724	1.45 -1.48	25
837	2417 36285	Gassendi F	7 . 68210	7 . 25868	59 . 68337		14.998	. 70 -0. 72	5
838	2416 36294*	Billy A	. 69944	. 24683	. 66912	46. 269		.44 -1.86	11
839	2137 36324	Gassendi L	. 62319	. 34750	. 69844	41.741		. 33 - 2. 66	4
	2420		8	8	66			. 80	
840	36368 2153	Mersenius E	. 66479 11	. 38213	. 64023 103	46.078		-1.86 1.15	12
841	36373 2151	Mersenius C	. 67588	. 33758	. 65393	45.945		-1.39 1.35	9
842	36441	Liebig FA	. 64132 16	. 41900	. 64027	45.046		-2.78 1.57	7
843	36451 2154	Liebig F	. 65009 13	. 41641 13	. 63542 112	45.653	24.611	-0.20 1.24	9

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
844	36458	Palmieri E	- . 65445	- • 48808	+ .57785	- 48.556	- 29.207	+0. 38	5
845	2205A 36497	Fourier C	10 .69212	10 . 47779	90 . 54249	51.910	28.516	.90 +1.40	9
846	2203 36528*	Lehmann C	6 . 62423	6 . 58111	49 . 52044	50.180	35.565	.46	9
847	2318 36602	Drebbel A	11 . 60436	11. 62824	107 . 49241			.97	
848	36645		19	19	173	50.828	38.864	+2.09	6
	2318E	Lehmann H	. 64445	. 65587	. 39560	58.456	40.936	+1.72 .88	9
849	36648* 2306A	Schickard H	. 64187 22	. 68832	. 33729 211	62.278	43.509	-0.39 1.24	6
850	36662 2325A	Lacroix H	. 66059 10	. 62392 10	.41615 89	57.790	38.629	-1.01 .64	8
851	37005* 2447	Flamsteed D	. 70378	.05512	. 70686 50	44.874	3.162	-1.74	11
852	- 2447a	Flamsteed E	.71768	.06410	. 69233 43	46.029	3.677	-1.31	5
853	37019* 2446	Flamsteed C	. 71841	.09562	. 68699 78	46.280	5.494	.52 -2.42	10
854	37066*	Flamsteed GB	.76654	. 06239	. 63868	50.201	3.578	.93 -0.59	7
855	37116*	Letronne F	13 . 71004	13 .15974	109 .68446	46.050	9.200	1.21 -1.60	9
856	2435 37151*	Flamsteed CA	. 75170	14 .11540	122 .64777	49.247	6.633	1.45 -1.76	16
857	37225	Billy D	. 721 27	. 25559	74 . 64217	48.320	14.824	.84 -1.79	5
858	2138A 37262	Hansteen A	. 77000	. 21995	39 . 59669	52.227	12.723	- 2, 33	4
859	2118 37269*	Zupus A	. 76742	. 29555	71 . 56825	53. 481	17.197	. 73 -0. 70	10
860	37332	Zupus RA	. 73742	. 32610	38 . 59211	51.237	19.025	. 37 +0. 63	7
861	37359	Cavendish B	. 75340	. 39448	103 . 52531	55,113	23. 243	1.06 -0.71	4
862	37394	De Vico K	10 . 79910	10 . 34274	88 . 49298	58.328	20.053	. 80 -0. 82	5
863	37405*	de Gaspar. B	. 70722	. 45418	76 .54164	52.552	27.014	. 65 -0.16	11
864	37499 2222B	Lagrange H	5 . 79676 22	. 49233 22	40 . 35002 177	66. 283	29.498	. 38 -0. 23	6
865	37518 2235	Piazzi F	. 71090	. 58292	. 39280	61.077	35.677	1.08 -0.46	9
866	37524	-	. 721 88	9 . 54704	80 . 42231	59.671	33.188	.55	4
867	38049* 1992	Damoiseau E	14 .84697	. 09058	122. 52162	58.372	5.203	. 89 - 2. 04	19
868	38074*	Grimaldi C	. 87708	.04545	38 . 47568	61.527	2.608	. 34 - 2. 08	10
869	2005 38081*	Lohrmann A	18 .88777	18 .01286	159 . 45745	62.738	0.737	1.31 -2,12	16
870	1977 38181	Damoiseau D	10 . 88684	$10 \\ .11168$	81 . 44727	63.236	6.415	. 64 - 0. 86	5
871	1991 38243	Sirsalis F	5 . 84259	5 23442.	42 . 48500	60.074	13.556	. 33 +0.12	10
872	2088 38249	Crüger C	12 . 84478	12 28967	116 . 44816	62.053	16.852	.98 -1.38	4
873	2072A 38313	de Vico	11 . 81740	11 . 33720	94 .46535	60.346	19.722	.73 -1.39	6
874	2059 38325	de Vico C	16 . 82961	16 .35208	187 .43565	62.294	20. 593	1.51 +1.74	5
875	2062 38411*	Byrgius A	4 . 81651	4 . 41573	38 . 40458	63, 641	24.523	. 29 +2, 78	4
876	2047 39006*	Grimaldi E	12 .90008	14 .06377	123 . 42979	64.475	3.658	. 87 -0. 93	4
877	2007 39006A	Grimaldi D	15 .90906	$15 \\ .06533$	127 . 40896	65.778	3. 749	.95 -1.82	4
878	2006 39035*	Grimaldi B	31 . 93314	29 . 05041	251 . 35344	69.255	2.892	1.78 -1.55	6
879	2004 391 29 A	-	23 92066 -	23 . 19483	210 . 34081	69.686	11.224	1.29 +1.49	4
880	39202A	(bright spot)	27 .90850	26 . 21974	222 . 35265		12.706	1.32 -1.72	14
		/0F**/	9	9	73			.45	

	B & M	Designation	E	F	G	Long	Lat	Н	P1.
			+	-	+	+	-		
881	40006 3639A	Réaumur C	.00369 7	.06042	. 99883 54	0.211	3.461	+1.15	4
882	40012	Réaumur Y	.00956 6	. 02200 6	1.00023 42	0.547	1.259	+0.90 .73	5
883	40017 3461	Réaumur B	. 01451	.07377	. 99860 38	0.832	4.224	+2.48	7
884	40033	Seeliger S	. 03664	. 0369 6	.99985	2,098	2,115	+2.09	4
885	40040	Réaumur D	. 04832	. 00372	44 • 99959	2.767	0.212	+1.33	6
886	3639B 40047	Hipparchus F	. 04337	.07254	.99 706	2.490	4.157	.99 +1.10	7
887	3608 40049	Hipparchus H	.03977	. 09498	75 99595	2.286	5.443	1.30 +2.19	8
888	3608C 40053*	Seeliger	8 .05242	.03815	61 99868 .	3.004	2.184	1.06 +1.36	26
889	3610 40053A	Seeliger A	. 05330	4 . 03219	31 99867.	3.055	1.843	.54 +1.06	7
890	3610A 40088	Hipparchus N	5 . 08689	5 . 08387	39 99390.	4.996	4.805	. 68 +2.10	12
891	3616 40109	Ptolemaeus X	5 . 00518	4 . 19046	33 . 98331	0.301	10.961	.57 +2.78	7
892	2970K 40110	Gylden C	6 .01762	6 . 10221	46	1.013	5,855	. 79 +3. 24	17
893	3642 40116	Ptolemacus Y	. 01 2 2 9	. 16219	63 .98717	0. 713	9.329	1.09 +0.83	12
	2970L	Müller F	. 01229 4 . 02582	.13632	.90717 28 .99125	1.492	7.827	. 48 +1. 59	4
894	401 23B (3583)		11	10	79			1.36	
895	40132A 3612A	Hipparchus B	. 03019	.12131	. 99381 56	1.739	6.956	+2.85	6
896	40132 3612	Hipparchus K	.03770	.12085	.99311	2.173	6.933	+1.99	10
897	40136 3584	Albategn. G	.03275	.16396 10	.98754 89	1.899	9.421	+2.77 1.38	5
898	401 43 361 8B	Müller O	.04217	.13714	.99022 75	2.438	7.877	+0.97 1.29	5
899	40153* 3611	Hipparchus J	. 05562	. 13150	.99095	3. 21 2	7.547	+2.06	10
900	40161 3611C	Hipparchus U	. 061 7 2	.11737	. 99239 36	3. 561	6.732	+2.11 .62	11
901	401 67A 3579A	Albategn. C	. 06390	. 17859	. 98194 41	3. 723	10.286	+0.16	13
902	40175	Albategn. M	. 07186	.15469	.98763	4.161	8.878	+3.91	12
903	3579B 40177	Albategn. N	. 07815	.17122	33 .98247	4.547	9.855	. 57 +0. 58	7
904	3579C 40203	Parrot N	6 .00774	. 23769	49 .97148	0.456	13.747	. 84 +0. 29	5
905	3576A 40216	Parrot Q	13 01805.	13 . 26033	106 .96597	1.070	15.080	1.79 +1.04	10
906	3576B 40222	Parrot W	5 . 02504	5 . 22751	35 97429.	1.472	13.139	.59 +1.41	6
907	3576C 40235	Parrot X	7 . 03186	7 . 25010	51 96703 .	1.886	14.492	.86 -1.12	4
908	3576D 40249	Parrot O	10 .04290	9 . 291 30	80 . 95550	2.570	16.938	1.34 -0.28	8
909	3575A 40308*	La Caille A	5 . 00660	5 . 38820	45 . 92330	0.409	22.803	. 75 +2. 80	13
910	3533A 40310*	Parrot L	10 . 01549	10 . 30938	90 . 95217	0.932	17.997	1.44 +2.24	13
911	3569A	La Caille B	. 02255	. 35711	29 . 93385	1.383	20.921	. 48 +0, 10	4
	40325 3535A	Parrot M	6	5	.95085 50 .95071	1.958	17.969	. 81 +0. 08	4
912	40330 3569B		. 03251	. 30853	69			1.14	
913	40337 3541A	Delaunay A	. 03300	. 37389	.92761	2.037	21.940	+1.17 1.85	4
914	40342 3569C	Parrot P	.04874	. 32045	.94661	2.947	18.679	+0.98 1.00	4
915	40356* 3545A	Faye A	.05116	. 36081	.93138	3.144		+0. 23	11
916	40370* 3570	Argelander D	.07428	. 30241	. 95083 31	4.466	17.592	+0.91	33
917	40373* 3547A	Donati A	.07409 10	. 33632 8	.93860 77	4.513	19.657	-0.37 1.26	5
918	40378 3545B	Faye B	.07274 11	. 38445 9	. 92030 83	4.519	22.609	+0.04 1.32	4
				-	-				

343

	B & M	Designation	Е	F	G	Long	Lat	Н	Р І.
			+	-	+	+	-		
919	40411 3538	La Caille H	.01250 14	. 41874 14	.90934 137	0. 787	24.723	+2.08 2.16	4
920	40414* 3484	Werner B	.01109 12	. 44073	. 89712	0. 708	26.161	-0.70	4
921	40430 3535	La Caille D	.03520	. 40042 10	.91587	2.200	23. 599	1.46 +0.34	9
922	40442 (3531)	Blanchinus M	. 04104	. 42503	.90440	2.598	25.148	1.42 +0.24	12
923	3485A	(bright spot)	. 05015	. 45491	. 88938 75	3. 227	27.052	.52 +0.39 1.16	16
924	40471* (3532A)	Blanchinus K	. 07953	. 41871	.90474 39	5.023	24.750	+0.17	15
925	40497 3514A	Apianus F	. 09772	. 47081	. 87769 49	6.353	28.063	+1.35 .75	8
926	40509 3466G	Walter S	. 009 20	. 59310	. 80530	0.654	36.369	+0.31	9
927	40513 3467	Walter A	.01147	. 53508	.84392 62	0.778	32.373	-1.18	5
928	40530* 3498A	Aliacensis E	.03548	. 50574	. 86215 56	2.356	30.374	+0. 29	5
929	40564 3492B	Aliacensis G	. 06871 6	. 54935	. 83400 47	4.709	33. 283	+1.79	12
930	40577* 3460	Nonius A	. 07927	. 57807	. 81 250 57	5.572	35.302	+0.52	9
931	40627* 3445A	Stöfler R	. 02286 14	. 67075 11	. 74018 105	1.768	42.169	-1.48 1.35	5
932	40629 3420A	Licetus G	.02412 10	. 69183	. 72237 75	1.912	43.746	+0. 89	9
933	40653* 3437	Stöfler K	.05641	. 63499 10	. 77010 84	4.189	39.432	-0.48 1.12	8
934	40667* 3434	Stöfler F	.06348	. 67680 10	. 73147 86	4.959	42.669	- 2, 49 1, 09	7
935	40681A	-	.08731 10	. 61599 10	. 78281 96	6.364	38.027	-0.12 1.31	4
936	40701 3419A	Licetus K	. 00030	. 71313	. 70094 69	0.024	45.493	-0.11	4
937	40703 3168	Saussure D	.00248	. 73027 5	. 68367 45	0. 207	46.887	+0. 61	4
938	40715A 3400	Licetus F	. 01180 10	.71887 10	. 69485 79	0.972	45.969	-0.23	4
939	40718 3221	Deluc C	.00996 7	. 78087	. 62350 58	0.915	51.390	-1.21 .63	5
940	40720	-	. 02063	. 70624 5	. 70660	1.672	44.973	-1.32	6
941	40721 3418A	Licetus N	. 02737	. 71272	. 70034 48	2. 238	45.480	-0.70	13
942	40722 3419C	Licetus M	. 02252	. 72797 3	. 68447 28	1.884	46.748	-0.91	5
943	40731* 3421	Licetus H	. 03821	.11800	. 69357 53	3.153	45.948	-1.72 .64	18
944	40734* 3414A	Licetus A	. 03798 5	. 74005	. 67065 40	3. 241	47.770	-0.97	6
945	40749 3396	Lilius B	.04020	. 79807 5	. 60005 47	3.832	52.999	-1.22	5
946	40769 3394A	Lilius S	.06183 15	. 79537 15	. 60143 115	5.869	52, 759	-1.60 1.20	4
947	40775A -	-	.07403	. 75827 9	. 64765 89	6.520	49.315	-0.08	4
948	40782 3414F	Licetus U	.08842	. 72942 8	. 67635 61	7.448	46.919	- 2. 33	10
949	40787* 3408A	Cuvier G	.08270 10	. 77461 8	. 62670 81	7.517	50.783	-0.34	5
950	40795* 3404A	Cuvier H	.09767 7	. 75050 6	. 65445 47	8.488	48.598	+0.95	9
951	40807A* 3225	Deluc G	.00601	.87764 13	. 47530 120	0.724	61.559	- 3. 31 . 99	7
952	40813 3397A	Lilius J	.01702 10	.83155 10	. 55450 77	1.758	56. 291	-0.66 .74	11
953	40820* 3397B	Lilius K	.02266 8	. 80385 8	. 59341 72		53.544	-1.02 .74	6
954	40825 3386A	Zach H	.02614 13	.85781 12	. 51 361 1 23	2.913	59.056	+0.27	4
955	40839 3357	Curtius B	.03629	.89557 12	.44055 106	4.709	63.729	- 2. 22 . 81	5
956	40840 -	-	.04458 12	.80311 12	. 59508 115	4.284	53.385	+0.95 1.19	4

	B & M	Designation	E	F	G	Long	Lat	н	P1.
			+	-	+	+	-		
957	40841 3397G	Lilius R	. 04408 10	. 81519	.57766 76	4.363	54.599	+0.15 .76	+
958	40844*	Zach J	. 04442	. 84132	. 53731	4.725	57.347	-1.31 .56	16
959	3386B 40864	Zach L	. 06317	. 84730	60 . 52499	6.861	58.032	-2.15	5
960	3389B 40868*	Zach D	16 .06428	17 .88308	149 .46426	7.882	62.043	1.36 -0.43	6
961	3388 40874	-	10 .06988	10 .84385	82 . 53119	7.494	57.588	. 66 -0. 76	4
962	40880	Lilius W	14 .08596	14 . 80598	137 .58692	8.332	53.647	1.26 +1.27	4
963	3394D 40882*	Lilius A	11 . 08695	10 . 82224	104 . 56024	8. 281	55. 413	1.06 -2.17	5
964	3395 40894	[acobi]	10 . 09530	10 . 84664	81 . 52103	10.365	57.969	. 79 - 2. 30	6
965	3381 A 40896*	Jacobi C	10	9 . 86350	80 . 49355	10.517	59.829	. 72 - 2. 07	4
966	3378 40898*	Pentland F	14 . 09223	14.88307	110	11.353	62.051	.94 -0.59	11
967	3366A 40913*	Curtius A	. 01 680	. 92993	. 10,00 72 . 36617	2. 626	68.486	.57 -0.75	5
	3356		16	.92993	149	4. 425	69.225	.95	4
968	40923 3357A	Curtius C	. 02739	16	. 35389			+1.26	
969	40937 3338B	Schomberg, G	. 02997	.97479	. 22083	7. 728	77.122	-0.10	5
970	40962 3356E	Curtius L	. 06113 20	. 92900 20	. 36698 199	9.457	68.175	+1.26	4
971	40988 3334	Schomberger A	. 08004 24	.98043 26	.17579 250	24.480	78.854	-1.26 .76	6
972	40982* 3363A	Pentland E	.08672 18	.92722 16	. 36566 137	13.341	67.937	+0.84 .87	9
973	41002	Pickering C	. 10710	. 02634 8	.99475 54	6.145	1.508	+1.47 .93	4
974	41008	Hipparchus NA	.10362	.08737	.99212	5.962	5.005	+2.32	5
975	41022 3607A	Pickering A	. 12278	. 02716	. 99307 42	7.048	1.554	+1.74	7
976	41023* 3607B	Pickering B	. 12875	. 03624	. 99220 27	7.393	2.074	+2.04	18
977	41025* 3607	Pickering	. 1 21 83	. 04966	. 99218 67	7.000	2.844	+1.50	15
978	41028	Hipparchus G	. 1 2884	. 08720	.98797	7.429	5.001	+0.25	16
979	3609 41037*	Horrocks M	.13247	. 07035	. 98990	7.622	4.029	+2.08	22
980	3615 41064	Saunder S	. 1 69 22	. 04096	24 . 98578	9.740	2.345	. 41 +1. 80	5
981	40176	Saunder B	.17018	.06797	63 .98477	9.804	3. 890	1.08 + 2.91	8
982	3621B 41084	Saunder C	.18252	.04776	. 98326	10.515	2.734	. 59 +2. 08	8
983	3621C 41093	Lade X	. 19130	. 02945	52 . 98234	11.019	1.685	. 89 +2.13	4
984	41123	Hind	7 .12656	7 .13745	50 98373 .	7. 331	7.889	. 85 +2, 29	4
985	3601 41125	Hind C	6 . 1 2831	6 .15099	55 98230.	7.441	8.666	.94 +3,62	8
986	3603 41138	Ritchey F	6 .13117	6 .18200	46 .97578	7.656	10.473	. 79 +2.15	6
987	41139	Ritchey A	8 .13234	8 .19616	59 . 97372	7.739	11.288	1.00 +3.58	4
988	3580A 41142	Hipparchus C	11 .14203	11 .12834	107 .98350	8, 217	7.359	1.81 +3.40	15
989	3606 41151*	Hipparchus L	6 .15561	6 .11883	52 . 981 79	9.006	6.816	.89 +1.95	15
990	3613 41154	Hipparchus Z	5 .15609	5 .14841	36 .97782	9.069	8.523	. 61 +2. 19	4
991	3606A 41157*	Ritchey D	.15787	.17752	69 .97284	9.217	10. 210	1.17 +2.48	18
992	3580D 41158*	Ritchey C	.15707 .15707	.18952	40 . 97020	9.196	10.914	. 68 +1. 63	13
993	3580C 41191	Andel H	. 19707 4 . 19520	.11550	.97020 32 .97487	11.322	6. 626	+1.03 .54 +1.58	9
//0	3725A	Alloci II	. 19320	. 11330	46	11.022	0. 020	.78	,

	B & M	Designation	E	F	G	Long	Lat	н	P1.
			+	-	+	+	-		
994	41193 3725B	Andel J	. 19651 5	.13075 5	.97287 37	11.419	7.504	+1.90 .62	11
995	41194* 3728	Andel F	. 19038	.14448	. 97259 30	11.075	8.294	+2.65	16
996	41202* 3582	Albategn. E	. 10881 6	. 22363	.96967 48	6.402	12.908	.51 +1.83 .80	4
997	41203	Albategn. S	. 10282	. 23021	.96895	6.057	13.292	+2.11	10
998	3582B 41218* 3559A	Argelander A	.11296	. 28393	47 .95319	6.758	16.478	.79 +1.69	13
999	41229* 3550	Airy A	.12762	.29249	38 . 94871 62	7.661	16.990	.63 +1.64 1.02	15
1000	41247 3550B	Airy P	.14010	. 27325	.95207	8, 371	15.851	+0.63	6
1001	41238 3550A	Airy O	.13936	. 28778	.94933 54	8, 351	16.695	+3.01	4
1002	41250 3580B	Ritchey B	. 15231	. 2071	.96619 45	8.958	11.955	-0.33 .76	4
1003	41259 3551B	Airy S	. 15621	. 29639	.94349	9.400	17.219	+2.10	9
1004	41268 3741	Abulfeda E	.16891 8	. 28773 8	.94299 67	10.155	16.717	+0.48	15
1005	41278* 3736	Abulfeda A	.17941 8	. 28239	.94229 62	10.779	16.404	-0.14 1.08	20
1006	41286 3743B	Abulfeda O	.18705	. 26594	. 94691 61	11.174	15.404	+2.04	7
1007	41296 3743C	Abulfeda P	. 19341	. 26673 7	.94647 70	11.549	15.435	+3.78	5
1008	41302 3549 A	Airy J	.10047 7	. 32571	.94063	6.096	18.999	+0.84	4
1009	41321 3554A	Airy F	.12029 5	. 31185 5	. 94330 35	7.267	18.156	+1.33	11
1010	41324 3553A	Airy L	. 12329 5	. 34896 5	. 92973 35	7.553	20.409	+1.19	12
1011	41329 3524A	Playfair B	. 12180	. 39362	.91170 87	7.609	23.168	+0.84	4
1012	41343 3554C	Airy R	.14419 8	. 33488 7	.93171 65	8.797	19.554	+0.88	5
1013	41347 3524D	Playfair E	.14386	. 37048	.91790 80	8,907	21.738	+0.43	4
1014	41365* 3780	Abenezra B	.16372	. 35482	.92079 52	10.080	20. 772	+0.77 .83	17
1015	41366 3780E	Abenezra F	.16747 13	. 36705 12	.91545 112	10.366	21.524	+0.71 1.78	6
1016	41370	Geber K	.17480 6	. 30239 5	.93859 40	10.549	17.574	+2.56 .65	6
1017	41375 3780F	Abenezra G	.17924 9	. 35007	.91931 78	11.032	20.493	-0.17 1.25	6
1018	41428* 3518	Apianus E	.12525 10	. 48175 9	.86769 69	8.213	28.789	+0.57 1.04	6
1019	41436 3515	Apianus B	.13918 7	. 45973 7	. 87819 55	9.005	27.340	+1.68 .84	11
1020	41439 3502	Poisson A	.13834 5	. 49537 5	. 85660 42	9.173	29.722	-1.48 .63	4
1021	41458	Apianus N	.15110 8	.48246 8	. 86408 59	9.918	28.811	+1.94 .89	5
1022	41461 3517A	Apianus M	.16247 9	.41845 8	. 89491 61	10.289	24.705	+2.05 .95	8
1023	41467* 3516	Apianus C	.16066 8	. 47104 8	. 86720 69	10.495	28.106	-0.24 1.04	6
1024	41468 3516A	Apianus L	.16491 12	. 48606 11	. 85834 104	10.875	29.078	+0.17 1.55	6
1025	41479 3501C	Poisson S	.17196 12	. 49963 10	. 85090 80	11.425	29.922	+2.80	6
1026	41493* 3813A	Pontanus K	.19780 4	. 43415	. 88000 27	12.667	25.703	+1.75	13
1027	41504 3499	Aliacensis D	. 10001	. 54643	. 83216	6.853	33.102	+0.94	21
1028	41515 3507A	Poisson M	.11039	. 55776	. 82244	7.644	33.906	-0.27	4
1029	41532 3501B	Poisson P	. 13063	. 52796	. 83921	8.847	31.866	+0.07	5
1030	41537 3506A	Poisson O	. 13029	. 57341	. 80877 52	9.151	34.990	-0.10	4
1031	41539* 3463	Kaiser C	.13473 9	. 59517 9	. 79321 69	9.639	36.491	+1.36 .95	22

	B & M	Designation	E +	F -	G +	Long +	Lat -	Н	P1.
1032	41548	Gem. Fris. F	.14536	. 58465	. 79793	10.324	35. 785	-0.31	5
1033	3823A 41569	Gem. Fris. EA	8 .16687	7 .59726	63 . 78600	11.986	36. 623	. 87 +2. 05	5
1034	3824B 41576	Gem. Fris. M	11 .17831	9 . 56237	87 . 80547	12.482	34. 281	1.19 -2.75	5
1035	3819B 41590*	Pontanus J	8 . 19661	7 . 50104	66 . 84427	13.109	30.027	,93 +2.16	8
1036	3809A 41629*	Faraday D	7 .12104	69090	49 . 71 383	9.623	43.659	.71 +1.34	10
1037	3432 41637	Faraday K	9 .13217	9 . 67738	72 72502 .	10.331	42.587	.89 +1.71	8
1038	3451A 41641	Maurolycus H	10 .14177	9 .61848	71 . 773 <u>96</u>	10.380	36.168	.89 +1.42	5
1039	3849A 41642	Maurolycus C	.14597	, 62446	. 76766	10.766	38.629	. 73 +0. 48	5
1040	3849 41650	Gem. Fris. K	.15076	. 60788	61 . 78036	10.934	37.409	.81 +1.05	12
1041	3824A 41654*	Maurolycus B	.15535	.64612	52 . 74839	11.726	40. 208	.70 +1.47	10
1042	3848 41672A	-	.17603	13. 62424	. 76112	13.022	38.627	1.29 -0.03	4
1043	41677*	Maurolycus J	.17754	. 67434	. 71448	13.954	42.488	1.11 - 2.84	11
1044	3852 41680*	Gem. Fris. EB	.18440	. 60070	35 . 77904	13.316	36.882	.44 +1.52 .41	14
1045	3824C 41686 2854C	Maurolycus L	. 18505	. 66826	30 . 71667	14.478	42.076	-4.85 1.81	4
1046	3854C 41713	Licetus Q	15 .11441	. 73332	145 . 66935	9.699	47.200	-0.98 1.34	4
1047	3414I 41720 3435A	Faraday H	.12618	. 70720	115 . 69588 54	10. 277	44.998	+0. 26	6
1048	41721* 3435	Faraday G	. 12189	. 71749	. 68555	10.081	45.858	-0.32 .79	7
1049	41731	-	. 13812	, 71489 10	. 68760	11.357	45.548	+2.55	5
1050	- 41735 3880A	Clairaut H	.13772	. 75530	. 64297 36	12.089	48.957	+2.48	5
1051	41736* 3407	Cuvier C	. 13129	. 76507	. 63035 55	11.765	49.916	-0.08	17
1052	41739 3409	Cuvier E	.13639	. 79100	. 59515	12.907	52.335	-1.31 .58	8
1053	41748* 3406	Cuvier B	.14843	. 78326	. 60115 68	13,869	51.671	- 2. 69 . 71	8
1054	41754* 3881	Clairaut C	.15467	. 74301	. 64832	13.418	48.106	- 3. 21 . 78	8
1055	41762 3877A	Clairaut M	.16484 11	. 721 75	. 67444 76	13.734	46.110	+2.57	7
1056	41790	-	.19644 16	. 701 20 1 4	. 68415	16.020	44.570	-1.45 1.29	6
1057	41795A	-	.19834	. 75721 11	. 62419 83	17.627	49.142	+2.01	5
1058	41807 3374A	Kinau G	.10496 10	.87838 10	. 46544 82	12.708	61.489	-0.69 .66	5
1059	41810 3405A	Cuvier M	.11256	. 801 69 8	. 58761 68	10.843	53.266	+0.57 .69	8
1060	41832A	Jacobi Q	.13639 10	.82607 11	. 54530 104	14.042		-1.44	5
1061	41824 3375E	Jacobi P	.12948 10	.84134 10	. 52375 83	13.886		-0.93 .75	7
1062	41841* 3377	Jacobi B	.14015	. 81321 8	. 56444 63	•	54.428	-0.39 .61	11
1063	41845 3376	Jacobi A	.14420	.85208 16	. 50122	16.050		-1.69 1.13	4
1064	41849 3366C	Pentland O	.14308	. 89183	. 43150 87	18.344		+1.76	6
1065	41857 3371A	Kinau B	.15636	. 87893	. 44872		61.602	-1.46 .37	7
1066	41859* 3910B	Manzinus K	.15588	. 89232	. 42094 70	20. 320	63. 295	-1.98	4
1067	41864A 3894A	Tannerus A	.16813	. 84255	.51026	18.236		-1.28 1.24	4
1068	41865* 3374D	Kinau K	.16242	.85265	. 49528 43		58.562	-1.13 .43	8
1069	41865A 3374E	Kinau L	.16444 14	.85873 10	. 48321 101	18. /93	59.272	-1.78 .85	4

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
			+	-	+	+	-		
1070	41871 3890A	Baco G	.17189	. 81241	. 55527 111	17.200	54.416	-1.84 1.07	4
1071	41872 3896	Tannerus D	.17299 10	. 82690 10	. 53404	17.948	55.828	-0.97 .83	5
1072	41876A 3373A	Kinau E	. 17137	. 86710 15	. 46865 153	20.085	60.080	+0.75 1.25	4
1073	41879 3910D	Manzinus M	.17276	. 89435	. 41173	22. 762	63.469	-0.67 .36	6
1074	41883* 3897	Tannerus E	. 18733	. 82970	. 52590 77	19.606	56.065	+0.06	6
1075	41884 3894B	Tannerus B	. 18036	.84471 16	.50442 125	19.674	57.618	+0.44 1.09	5
1076	41894 3903A	Mutus K	. 19516 10	. 84570 10	. 49578	21.486	57 . 7 88	-0.79 .65	8
1077	41898* 3902A	Mutus L	. 19860 11	. 88085 11	. 42756 90	24.914	61.844	-1.61 .67	7
1078	41900 3365A	Pentland J	. 10903 20	.90234 20	. 41912 195	14.581	64.361	+1.53 1.42	4
1079	41920 3365D	Pentland M	.12667 18	.90197 18	. 41136 179	17.115	64.489	-1.03 1.28	4
1080	41921 3365B	Pentland K	.12049 15	.91905 14	. 37659 111	17.742	66. 721	+0.86	7
1081	41945* 3919A	Boguslaws. H	.14424 14	.95565 15	. 25885 138	29.128	72. 772	+0.93	5
1082	41951 3908B	Manzinus J	.15967	.91574 4	. 36808 31	23. 450	66.339	-0.38	8
1083	41970 3908D	Manzinus O	.17933 10	.90537 10	. 38438 98	25.011	64.897	-0.34 .65	4
1084	41984* 3917A	Boguslaws. G	.17992 27	.94834 27	. 261 67 269	34.511	71.486	+0.16	4
1085	42016* 3687	Saunder A	.21227 10	.06951 8	.97565	12.274	3.982	+1.55 1.12	8
1086	42023 3651 A	Theon Jr. B	. 22974	.03747	.97322 66	13.282	2,145	+1.16	6
1087	42052 3650A	Theon Sr. C	. 25065 6	.02417	.96800 43	14.517	1.384	+0.38 1.26	10
1088	42060 3649	Theon Sr. A	.26564 5	.00286 5	.96479 39	15.394	0.163	+1.21	14
1089	42061* 3648	Theon Sr.	. 26614 7	.01359 7	.96468 63	15.423	0.778	+1.41 1.05	15
1090	42074 3651	Theon Jr.	. 27253 8	.04140	.96229 68	15.812	2.370	+1.73	14
1091	42069* 3688C	Taylor D	. 26979 4	.09266 4	.95990 26	15.698	5.309	+2.41	12
1092	41190 3725C	Andel K	.19957 6	.10108 6	.97636 49	16.887	2.651	+4.23	6
1093	42108 3729B	Andel D	.19969 7	.18662 7	.96488 67	11.692	10.724	+4.94 1.12	6
1094	42114 3726	Dollond D	. 21472 5	.14211 5	.96806 38	12.505	8.155	+2.99 .64	14
1095	42115 3725D	Dollond L	. 21489	.15228	.96620 64	12.538	8.746	+2.53 1.07	5
1096	42148* 3722	Dollond	. 24536	.18138	.95343 48	14.431	10.438	+1.85 .79	19
1097	42167 3727	Dollond E	. 26657	.17744	.94822 28	15.702	10.212	+1.45	18
1098	42187* 3730	Dollond M	. 28687	.17511	.94178 52	16.940	10.085	-0.08 .85	5
1099	42198 3699B	Kant P	. 29364	.18711	.93842 34	17.375	10.773	+1.62	13
1100	42202* 3735A	Abulfeda Q	. 20672	. 22189	.95349	12.232	12.812	+0.96 .56 +3.38	14
1101	42218 3744	Abulfeda F	. 21755	. 27858	.93753 77	13.064	16.143	1.26	10
1102	42221 3735C	Abulfeda S	. 22524 12 21045	. 21 21 3	. 95252 85 05060	13.304	12.228	+2.63 1.41	4
1103 1104	42212 3735B 42235	Abulfeda R Abulfeda T	. 21945 7 . 22979	. 22080 7 25589	. 95069 65 . 93990	12.998 13.738	12,751	+0.63 1.07	8
1104	42235 3735D 42237	Almanon F	. 22979 12 . 23742	. 25589 9 . 27374	.93990 90 .93248	13. 738	14.813 15.880	+1.47 1.47 +0.71	4 4
1105	3751B 42250*	Descartes A	. 23/42 6 . 25671	. 2/3/4 5 . 20890	.93248 47 .94407	14.284	12.052	+0.71 .76 +0.70	4
1100	3717 42255	Abulfeda Z	. 23071 5 . 25416	. 20890 5 . 25378	. 94407 46 . 93455	15. 211		+0.70 .76 +2.07	9 10
1107	37351	nbulcua Z	. 23410 7	. 23378 7	.93433	10, 214	14.003	.78	10

	B & M	Designation	E	F	G +	Long +	Lat -	Н	Pl.
1108	42267*	Almanon C	+ . 26481	- . 27793	. 92561	15.965	16.102	+3.58	6
1109	3754 42275	Abulfeda B	5 . 27393	5 . 2501 3	41 .92996	16.412	14.467	66 + 2. 11	4
1110	3737 42285	Abulfeda BA	. 28057	8 . 25343	63 .92802	16.821	14.649	1.01 +3.62	6
	3738		10	10 . 35030	.91360	12.968	20.488	1.20 +1.42	9
1111	42315 3774B	Geber E	7	6	50			. 79	7
1112	42327 3784E	Azophi F	. 22184 9	. 37897	. 90032 67	13.842	22, 230	+2.96	
1113	42338 3788B	Sacrobosco K	. 23414	. 38873 10	. 89196 92	14.708	22.857	+1.32 1.43	5
1114	42340 3751C	Almanon G	. 24043	. 30735	.92259 68	14.606	17.867	+2.99 1.09	4
1115	42356 3794A	Sacrobosco O	. 25836 14	. 36118	. 89815 103	16.048	21.129	+3.36 1.61	4
1116	42359*	Sacrobosco C	. 251 36	. 38992	. 88574 33	15.843	22.952	-0.21 .50	32
1117	3791 42372	Almanon L	. 27033	. 32508	.90797	16.579	18.939	+2.75	10
1118	3751F 42375	Sacrobosco P	. 27912	. 35318	33 . 89506	17.319	20.641	+3.28	5
1119	3794B 42403	Pontanus D	4 . 20608	. 43673	32 . 87660	13.229	25, 872	.50 +1.41	6
1120	3813 42407	Pontanus L	11 . 20422	11 . 47893	100 . 85509	13.432	28.580	1.52 +1.96	5
1121	3809B 42411	Pontanus N	15 . 21743	14 .41712	107 . 88391	13.819	24.619	1.59 +2.22	11
1122	3814A 42413	Pontanus O	. 21916	8 . 43912	57 .87154	14.115	26.041	. 88 +0. 38	6
	381 3B	Sacrobosco L	. 23562	7	68 . 87158	15.127	25.552	1.03 +1.30	14
1123	42433 3788C		5	5	. 87731	16.123	24.042	.55	8
1124	42450* 3789	Sacrobosco A	. 25361	. 40741	41		27.036	. 62 +1. 86	8
1125	42455 3788E	Sacrobosco N	. 25440 9	. 45504	. 85461 60	16.577		. 89	-
1126	42460 3790	Sacrobosco B	. 26549 8	. 40648 8	. 87480 65	16.882	23,971	+0.86	7
1127	42468 3809 H	Pontanus W	. 26389	. 48662 10	. 83449 82	17.548	29.073	+2.44 1.18	6
1128	42512	Goodacre F	. 21355	. 52962 6	. 82256 41	14.553	31.931	+2.35	8
1129	42517	Gem. Fris. S	. 21250 13	. 57668 13	. 79135 96	15.030	35.137	+3.43	4
1130	3820C 42524	Goodacre E	. 22459	. 54425	. 81005 66	15.496	32.921	+2.46 .93	7
1131	3825E 42537	Gem. Fris. T	. 23216	. 57200	. 78892	16.397	34.820	+3. 02 1. 15	4
1132	3820D 42542	Pontanus S	.24660	. 52229	. 81867	16.763	31.419	+3. 31	6
1133	3817A 42553	Zagut P	, 25275	, 53588	64 . 80467	17.437	32.430	.91 -1.27	7
1134	4048B 42559*	Büsching E	7 . 25330	6 . 59732	55 76208 .	18.385	36.641	.77 +1.49	15
1135	3845 42560	Zagut F	10 . 26021	11 . 50448	93 . 82519	17.501	30. 244	1.23 +2.73	12
1136	4051A 42585	Celsius H	6 . 28610	6 . 55642	44 . 78108	20.117	33.779	.63 +1.34	10
	4041	Buch D	. 20010 5 . 21870	. 63769	36 . 73955	16.474	39.586	. 49 +1. 23	7
1137	42613 3834B		10	9	. 72857	16.193		. 89 +3. 41	6
1138	42615 3846B	Maurolycus R	. 21158	. 65448	59	17.025	42.020	. 75 +0. 08	4
1139	42616 3846C	Maurolycus S	. 21753	. 66943	. 71038			. 73	
1140	42631* 3836	Buch B	. 23054	. 61382	. 75610	16.956		+1.40	16
1141	42636	-	. 23016 6	. 66044 7	. 71620 42	17.815		+1.82	6
1142	42648 3863B	Barocius N	. 24691	. 68351 7	. 68734 57	19.759		+0.51 .68 +3.02	5
1143	42660 3843	Büsching C	. 26666	. 60506	. 75251 68	19.512		+3.02 .89	4
1144	42671 3840A	Büsching A	. 27397 9	. 6195Ó 8	. 73609 62	20. 415	38. 264	+0.58 .79	7

	B & M	Designation	E +	F -	G +	Long +	Lat -	н	Pl.
1145	42678	Nicolai G	. 27851	. 67979	. 67823	22. 325	42.835	-0.28	5
1146	4010 42697*	Nicolai A	14 . 29560	15 . 67441	132 . 67709	23. 584	42.391	1.55 +0.57	33
1147	4004 42708A*	Baco O	. 20935	. 78817	43 . 57814	19.905	52.041	. 51 -0. 62	9
1148	3888E 42715	Breislak C	. 21226	. 75309	43 . 62327	18.806	48.836	. 43 +0. 58	4
1149	3861C 42722	Barocius DA	. 22662	8 . 72207	77 . 65386	19.115	46.217	. 83 +0. 24	7
1150	42735 3890C	Baco R	. 23366	. 75599	75 . 609 66	20.969	49.184	.85 -1.91	5
1151	42747A 3864C	Ideler C	.24666	12 . 77916	106	23. 216	51.233	1.12 -1.22	10
1152	42752* 3865B	Barocius EB	. 25320	. 72665	44 . 63792	21.648	46.634	. 44 -0. 81	16
1153	42754 3865C	Barocius EC	. 25531	. 74430	.61633	22. 501	48.130	. 43 -0. 84	8
1154	42773* 3865E	Barocius EE	. 26966	. 73693	79 . 619 <i>6</i> 9	23. 516	47.476	. 84 -0. 17	12
1155	42779	-	. 27665	. 79741	44 . 53493	27.346	52.938	.47 -1.26	5
1156	42783 3997A	Pitiscus G	. 28696	. 73843	69 .60946	25. 213	47.627	. 64 - 0. 81	8
1157	42792 4008B	Spallanz. A	. 29913	. 72223	. 62361	25.625	46.239	. 83 -0. 01	10
1158	42800 3889 A	Baco T	. 19973	. 80647	43 . 55674	19.735	53. 742	. 47 +0. 21	4
1159	42803 3894	Tannerus	. 20689 12	. 83172 12	87 . 51294 98	21.966	56.376	. 84 - 2. 03	4
1160	42810 3889C	Baco W	. 21502	. 80117	. 55793 130	21.076	53.265	. 87 -0. 53	4
1161	42819* 3901	Mutus B	.21636	. 89721	. 38230	29.507	63.913	1.26 -1.78	12
1162	42822 3898E	Tannerus N	. 22923	10 . 82655 6	. 51162	24.134	55. 852	. 45 - 2. 19	6
1163	42825 3903D	Mutus P	. 221 59 10	. 85712 10	. 46248 90	25.600	59.107	. 40 - 2. 05	6
1164	42836 3988A	Hommel M	. 23160	. 86359	. 44564 43	27.460	59.819	.72 -1.72 .33	7
1165	42838 3899B	Mutus Q	. 23567	. 88516	. 40180	30. 393	62.244	+0.43	4
1166	42845* 3988B	Hommel N	. 24572	. 85948 11	. 44817 81	28. 734	59.261	. 52 -0. 05	6
1167	42852* 3985B	Hommel K	. 25659	. 82349	. 50383	26.988	55.526	.63 -1.90 .49	12
1168	42857	Hommel X	. 25934 15	. 87234 14	. 41117 143	32. 241	60. 870	- 2. 35 1.02	4
1169	42862* 3985C	Hommel L	. 26057	. 82944	. 491 68 59	27.921	56.142	-2.07	7
1170	42865 3986F	Hommel E	. 26512	. 85665	. 44079 69	31.025	59.017	-1.36 .53	8
1171	42867 3954A	Nearch E	. 26702	. 87811	. 39772 60	33.876	61.385	+0.48	10
1172	42870 3985A	Hommel J	. 27830	. 80272 9	. 52617 71	27.875	53.442	-1.16 .65	11
1173	42915* 3919C	Boguslaws. D	. 21773 12	. 95519 11	. 20118 95	47.262	72.758	+0. 23	4
1174	43001 3656B	Delambre D	. 301 59	.01912	. 95401 44	17.543	1.094	+1.26 .73	10
1175	43029* 3680	Alfraganus	. 32393	. 09411	.94293 75	18.959	5.392	+2.52	12
1176	43021 3659	Delambre F	. 32964	.01805 7	.94406 68	19.247	1.034	+0. 21	4
1177	43040 3670	Hypatia E	. 34883	.00548	.93779 40	20.403	0.313	+1.01 .65	14
1178	43047 3684	Alfraganus D	. 34335	.07005	.93705 46	20.134	4.014	+0.86	11
1179	43056 3681B	Alfraganus F	. 35541	.06110	.93274 60	20. 858	3.502	+0.05	7
1180	43064 3681 C	Alfraganus G	. 36172 6	. 04607 6	.93078 43	21.237	2. 641	-0.59 .70	11
1181	43085 (3669)	Hypatia D	. 38542 7	. 05449 7	.92211 50	22. 683	3.120	+1.57 .80	8
1182	43100* 3683	Alfraganus C	. 30913	. 10606	.94619 31	18.092	6.081	+1.81 .51	32
1183	43137 3707	Kant N	. 33308 7	. 17204 7	.92929 46	19.718	9.885	+3.58	9
1184	43151 3704A	Zöllner K	. 35354 5	. 11315 5	.92933 37	20. 828	6.492	+1.26 .59	12

	B & M	Designation	E +	F -	G +	Long +	Lat -	Н	Pl.
	49010			. 29142	. 90430	19.430	16.904	+3.86	13
1185	43219 3765	Tacitus N	. 31900	5	32			. 50	
1186	43223* 3763	Tacitus C	. 32944 4	. 23622 4	. 91591 34	19.782	13,641	+2.80 .54	16
1187	43234A 3762	Tacitus E	. 33448	. 24069	.91287 49	20.123	13.905	+2.73	5
1188	43234 3761	Tacitus B	. 33936	. 24232	.91008	20.449	14.008	+1.85	7
1189	-	(bright spot)	. 35190	. 21 666	.91248	21.089	12.491	+2.95	5
1190	43295	-	. 39238	. 2531 6	. 88581	23.891	14.644	+2.35	8
1191	43324	Fermat E	. 32021	. 34080	33 . 88604	19.869	19.886	+3. 25	6
1192	3805 43330	Tacitus A	. 33434	. 29987	59 . 89478	20.488	17.428	+2.03	7
1193	3760 43333	Catharina M	. 33500	. 32951	48 . 88507	20.731	19.197	.74 +3.60 1.27	4
1194	43339	Fermat B	13 . 33192	12. 39185	. 86019	21.100	23, 025	+3.16	5
1195	3802 - *	(bright spot)	. 34823	. 38224	53 . 85761	22.099	22.438	+2.49	9
1196	43354	Catharina A	. 35625	. 34508	42 . 86966	22. 276	20.162	. 63 +2.00	4
1197	4168 43366	Polybius H	. 36043	. 361 49	. 86197	22.692	21.152	1.07 +3.10	7
1198	4112B 43368	Polybius J	. 36788	. 38690	43 . 84789	23.454	22. 714	. 64 +3. 42	6
1199	4110B 43418	Pons B	. 31090	, 48087	51 . 821 69	20. 724	28.694	. 75 +2. 66	10
1200	4098 43435	Pons H	. 33797	. 45331	48 . 82649	22. 240	26.915	. 68 +2. 43	7
1 201	4102B 43468*	Rothmann K	. 36173	. 48220	51 . 79945	24.345	28. 790	.73 +2.16	22
1202	- 43477	Rothmann C	3. 37157	.47863	26 . 79643	25.011	28.573	.35 +1.26	5
1 203	4055 43478	Rothmann H	10 37158 .	10 . 48669	91 . 79022	25.397	29.090	1.26 +1.80	4
1204	43483	Polybius B	5 . 38906	5 . 43081	35 . 81541	25.507	25.493	. 48 +1. 61	11
1205	43495	Piccolom. N	9 . 39337	9 . 45885	83 . 79767	26. 250	27. 289	1.17 +1.36	7
1206	4083D 43513*	Zagut A	12 . 31307	11 . 53004	79 . 78930	21.635	31.973	1.09 +1.69	14
1207	4047 43516	Rab. Lev. A	6 . 31840	6 . 56356	44 . 76203	22.676	34.308	. 60 - 0. 29	6
1208	4033 43517	Rab. Lev. D	9 . 31621	9 .57917	70 75076 .	22.840	35.411	. 93 -0. 81	4
1 209	4037 43520	Zagut L	13 . 32458	14 . 50453	133 .80116	22.050	30, 270	1.74 +1.53	6
1210	4051C 43522	Zagut K	13 . 321 39	14 . 52586	126 .78818	22.183	31.707	.92 +0.91	7
1210	4051D 43525	Zagut S	10 . 32237	. 55038	71 . 77234	22.655	33. 330	.97 +2.91	8
1211	4046A 43526	Rab. Lev. L	. 32136	6 . 56893	52 . 75787	22,978	34.649	.70 +1.15	8
1212	4033A 43527	Rab. Lev. D	10 . 32165	10 .57692	88 . 75050	23.199	35. 243	1.16 -0.39	5
	4037A	Zagut N	. 34127	10 . 51918	91 . 78618	23, 465	31.206	1.19 +3.55	5
1214	43541 4051F	-	. 34127 11 . 38252	10	.70010 74 .71849	28.030	35.641	1.01 +2.76	6
1215	43588 4026E	Riccius P	. 39485	. 58504 9 . 58517	.71849 64 .70907	29.111	35. 792	. 80 +0.96	8
1216	43598 4020A	Riccius Y	9	9	70	25. 622	44.126	.86 +1.67	4
1217	43619 4006A	Nicolai L	. 31070	. 69692 11	. 64784 81 71 288	25. 622		.91 +0.78	11
1218	43622 4024	Riccius G	$.324\bar{0}\bar{3}$. 62266	. 71 288 33 67370			+0.78 .41 +0.72	11
1219	43626 4003A	Nicolai D	. 32241	. 66559	. 67370	25.574	41.706	. 48	
1220	43627 4003	Nicolai	. 32225	. 67411	. 66409	25.884	42.403	-0.62	5
1 2 2 1	43635 4026A	Riccius J	. 33249	. 65216 12	. 68128 109			+0.00	5
1222	43644 4022	Riccius E	. 34110 8	. 64134 9	. 68659 81	26.418	39.914	-0. 81 . 97	5

	B & M	Designation	Е	F	G	Long	Lat	н	Pl.
			+	-	+	+	-		
1223	43645 4022A	Riccius N	. 34865	. 65780 7	. 66756 52	27.576	41.134	-0.09 .60	9
1224	43651 4026	Riccius M	. 35213	. 61341	. 70793	26.446	37.804	+1.24	9
1225	43651A	-	10 . 35712	10. 61 684	. 70294	26.932	38.037	.97 +1.87	4
1226	43657	Nicolai M	. 35753	. 67506	31 . 64560	28.977	42.450	. 38 +0. 29	6
1227	4006B 43664	Riccius D	. 36826	. 64736	. 66700	28,903	40. 353	. 57 -0. 36	6
1228	4021 43664 A	Riccius DA	12 . 36891	11 . 64018	95 . 67462	28. 671	39.780	1.10 +0.90	9
1229	43679	Lockyer A	. 37008	. 69499	42 . 61612	30.991	44.038	. 49 -0. 37	8
1230	4482A 43718 (2007B)	Hommel HA	10 . 31287	10 . 78800	. 53052	30. 529	51.988	. 84 +0. 24	6
1 2 3 1	(3997B) 43726A	Pitiscus A	.32747	13 . 76811	116	30.923	50. 320	1.07 -3.43	13
1232	3992 43729	Hommel R	. 32837	. 79374	60 . 51170	32. 684	52. 544	. 57 -0. 19	11
1233	3983B 43732A	Spallanz. D	. 331 26	. 72039	52 . 60798	28.583	46.136	. 46 -1. 45	5
1 2 3 4	43740	Dove Z	. 34790	. 70020	39 . 62278	29.188	44.466	. 41 -0. 72	4
1235	43770* (4480)	Lockyer HA	. 37683	. 70644	37 . 59740	32. 243	45.004	. 40 -1. 79	15
1236	43773 4002A	Dove A	. 37660	. 72990	42 . 56897 64	33. 500	46.929	. 44 -1. 47	6
1237	43777 3972A	Vlacq K	. 37377	. 77923	. 50304	36. 613	51.191	. 63 -0. 04	11
1238	43781* 4482	Lockyer G	. 38434 13	, 71455 13	50 . 58363	33. 366	45.637	. 44 -0. 94 64	7
1 2 3 9	43784 3972B	Vlacq H	. 38336	. 74140	109 . 55032 53	34.861	47.866	. 64 -0. 44	11
1240	43797* 3968	Vlacq A	. 39390	. 77909 13	. 48755 107	38.935	51.182	.51 -0.14 .91	4
1241	43819 3936C	Boussing't S	. 31892 10	. 89923 10	. 29872 92	46.873	64.083	-0.38 .48	4
1242	43890 3965A	Rosenberg. G	. 38974 16	. 80806 16	. 44212 148	41.396	53. 893	+0.28 1.14	4
1243	43920* 3936B	Boussing't R	. 32480 15	. 90140 15	. 28694 134	48.541	64.321	+0.30	4
1244	43990 3930	Helmholtz H	. 39041 14	. 90175 15	. 18031 139	65.210	64.503	-1.66	4
1245	43990A 3930A	Helmholtz J	. 39456 15	.90510 17	. 16121 151	67.775	64.783	+0.76	4
1246	44001* 3667	Moltke	. 409 33	. 00972	.91219 28	24.167	0.556	-0.23	26
1247	44025	Torricelli H	. 42634	. 05766 5	. 90275 37	25. 279	3. 305	+0. 04 . 58	11
1248	44034* 4227	Torricelli C	. 43743	. 04669	. 89723 61	25.990	2.678	-1.26 .95	16
1249	44067	Torricelli T	. 46013	. 07360	. 88456 40	27.482	4. 221	-0. 36 . 62	6
1250	44081	Censorinus K	. 48197 4	. 01745	. 87600 32	28.819	0.999	-0.02 .49	6
1251	44084* 4226	Torricelli B	. 48642	. 04504	. 87211 43	29.150	2.582	-0.69 .65	14
1252	44097* 4225	Torricelli A	. 49460 8	. 07835 8	. 86504 56	29.759	4.495	-0.81	14
1253	44217 4181	Cyrillus E	. 41159	. 27336	. 8701 2 61	25.315	15.854	+1.08	6
1254	44229 4158	Beaumont D	. 42192 7	. 29313 6	. 85927 53	26.152	17.025	+1.99	18
1255	44236 4183	Cyrillus G	. 43198	. 26941 6	. 86141 41	26. 632	15.619	+1.05	12
1256	44249	Beaumont N	. 44547 6	. 29071 6	. 84561 43		16.917	-1.73 .63	5
1257	44284 4157D	Beaumont L	. 48407 4	. 24866	. 83820 28		14.407	-1.10 .41	6
1258	44321 4158B	Beaumont F	. 42544 5	.31418 6	. 85017 38		18.287	+2.17 .56	8
1259	44322* 4156	Beaumont B	. 42726	. 32019	. 84650 80		18.658	+1.42 1.18	7
1260	44324* 4157A	Beaumont G	. 42787 5	. 34735 5	. 83490 36	27.134	20. 317	+0. 68 . 52	18

	B & M	Designation	E	F	G	Long	Lat	Н	Pl.
1 261	44337	Polybius L	+ . 43828	- . 37410	+ .81787	+ 28.186	- 21.957	10. 91	10
	4112D	-	8	8	53			+0.81	10 -
1262	44344 4156A	Beaumont C	. 43962	. 34539	. 82933	27.927	20. 201	+0.30 1.14	5
1263	44370 4157C	Beaumont K	. 47729 4	. 30000	. 82448 29	30.066	17.479	-2.11	6
1264	44401 4112	Polybius E	. 40202	. 41310	. 81830 50	26.164	24.375	+1.64 .71	9
1265	44415 4111	Polybius D	. 41778	. 451 65	. 78937 38	27.890	26.825	+1.42	14
1266	44427A	Piccolom. T	. 42704	. 47733	. 76901 27	29.043	28.486	+1.37	4
1267	44432	Polybius V	. 43932	. 42527	. 79017	29.073	25.191	-1.54 1.41	4
1268	44443*	Piccolom. K	.44682	10 . 43314	. 78308	29.708	25.660	+0.41	18
1269	4083A 44494*	Piccolom. L	. 49910	, 43987	38 . 74703	33.747	26.086	. 51 +0. 56	29
1270	4083B 44509	Wöhler C	. 40812	5 59787 .	35 . 69092	30.569	36.688	.46 +1.20	4
1271	4064C 44512	-	9 . 41421	11 .∙52574	110 . 74533	29.062	31.656	1.31 +3.03	4
1272	44514	Rothmann E	3 . 41024	3 . 54381	18 . 73430	29.191	32.883	. 23 +2. 80	7
1273	4055B 44538	Stiborius F	5 . 43522	5 . 58449	34 . 68659	32.370	35.716	. 43 +2.13	9
1274	4064D 44600	Wöhler B	7 . 40788	7 . 60501	48 . 68598	30.735	37.165	. 57 +2. 58	10
1275	4064B 44618*	Janssen B	7 . 41236	7 . 68354	49 . 60174	34.422	43.138	. 58 -0. 56	6
1276	4489A 44624	Wöhler F	11	10 . 64405	83 . 63557	33.816	40.094	.87 +0.01	4
1277	44627	Janssen MA	6 . 42683	6 . 67113	37 . 60763	35.086	42.107	. 41 +1. 57	4
1278	44628	Janssen C	. 41990	. 67998	76 . 60098	34.941	42.845	.80	6
1279	4488A 44636	Janssen M	. 43203	. 66745	46	35.408	41.832	.48 +1,29	9
	4487A	•	9	8	63			. 67	-
1280	44655 4465B	Brenner F	. 45735	. 65201	. 60657	37.016	40. 638	+1.92	10
1281	44660A*	Stiborius G	.46518	. 60592	. 64683 88	35.722	37.253	+1.67	13
1282	44725 4485	Janssen E	. 42240 18	.75196 16	. 50445 127	39.941	48.814	-1.45 1.11	4
1283	44761* 4488	Janssen K	. 46561 7	.71988 7	.51211 53	42.277	46.125	-2.37 .47	28
1284	44766 4499A	Watt A	. 46223	.76902 14	.44048 123	46.380	50.298	-0.81 .94	4
1285	44791 4471A	Fabricius J	. 49386	.71655	. 491 39	45.143	45.805	-1.04	5
1286	44811 3965B	Rosenberg. H	. 41620 16	.81765 17	. 39533 154	46.473	54.929	-1.69 1.06	4
1287	44861*	Biela C	. 46916	. 81093	. 34740	53, 481	54.250	-1.39 1.06	4
1288	4514 45021	Censorinus J	. 51955	20 . 01750	. 85425	31.307	1.002	-0.02 .77	5
1 289	45023	Censorinus B	. 52097	. 03458	52 . 85251	31.429	1.982	-0.54	6
1290	4237 45036	Isidorus H	. 53768	. 06826	39 . 84048	32,608	3.913	.58 +0.14	6
1 29 1	4294B 45039	Isidorus E	. 53642	. 09337	36 •• 83788	32, 627	5. 361	.53 -1.30	6
1 29 2	4295 45054	-	.55856	.04119	90 . 82819	33,997	2. 361	1.31 -0.36	5
1293	45057*	Isidorus D	, 55861	, 07388	50 . 82570	34.079	4.238	. 72 -0. 62	16
1294	4286 45059	-	. 55603	.09648	51 . 82559	33.960	5.536	.74 +0.06	5
1295	45083*	Censorinus D	5 58539	5 03325.	36 .81055	35.837	1.904	. 52 +0. 68	10
1296	4239 45090	Maskelyne T	8 59613 .	8 . 00003	58 . 80372	36.564	0.001	.82 +1.16	4
1297	- 45105	Isidorus V	. 50571	.15384	51 . 84860	30. 792	8.851	. 71 -0. 41	5
	-		5	5	34			. 50	

353

	B & M	Designation	Е	F	G	Long	Lat .	Н	P1,
			+	-	+	+	-		
1298	45113	Isidorus U	. 51741	.13768	. 84415 37	31.505	7.916	-0.64 .54	6
1 299	45121 4294A	Isidorus G	. 52110	. 11102	. 84646	31.617	6.372	+0.32	5
1300	45126	Isidorus W	. 52778	.16418	. 83353	32, 341	9.448	. 48 +0. 24	4
1 301	45143*	Isidorus A	. 541 65	. 13931	51 . 82805	33, 189	8.014	.74 -1.34	17
1302	4292 45145	Isidorus K	. 54280	.15446	.82613	33, 306	8.881	. 49 +0. 85	8
1 303	4294C 45152	Capella T	. 55765	.12013	47 . 82160	34.166	6.898	. 68 +0. 37	5
1304	45186	Capella J	. 58017	.16397	49 . 79686	34.123	9.832	.70 -1.33	5
1 305	4284A 45188	Gaudibert D	. 58173	.18314	. 791 63	36. 310	10.560	.44 -1.19	5
1306	45193	Capella A	4 . 59884	.13288	29 . 78820	37.225	7.645	. 40 - 2. 15	4
1307	4283 45196	Capella B	. 591 22	.16383	92 . 78883	36. 851	9.435	1.26 -1.19	5
1 308	4284 45201	Mädler D	. 50426	$.2184\frac{6}{4}$	40 . 83401	31.158	12.633	-2.12	5
1 309	- *	(bright spot)	. 53414	. 20319	49 . 81950	33.095	11.734	. 71 -1. 59	10
1310	45307	Fracastor. M	.50432	$.37026^{6}$	45 . 77915	32.913	21.748	.64 -1.30	5
1311	4127A 45315	Fracastor. L	. 51182	. 35182	. 78202	33. 204	20. 627	- 2, 35	5
1312	4127 45319	Fracastor. N	. 51362	. 39425	30 . 76224	33.973	23. 216	. 41 +0. 21	5
1313	4127C - *	(bright spot)	.52325	.34813	. 77720	33.950	20. 383	. 88 -0. 85	11
1314	45338A	Fracastor W	. 53839	. 38516	38 . 75037	35.659	22.638	.51 +1.10	4
1315	45340*	Rosse	. 54492	. 3069 <u>1</u>	. 77990	34.942	17.878	. 25 -0. 54	17
1316	4143 45365	Fracastor. J	. 56678	. 35472	53 . 74279	37. 345	20. 789	.72	7
1317	4126B -	-	. 57221	. 33458	44 . 74875	37. 387	19.547	.56 0.00	5
1318	45397A	-	. 59294	. 37894	. 71081	39.834	22. 263	1.00 +0.37	4
1319	45411.	Fracastor C	. 51562	2 . 41581	12 . 74832	34.568	24.586	.15 -1.09	4
1 3 2 0	4120 45447	Weinek H	16 .54680	16 .47886	129 . 68769	38.489	28.592	1.67 +1.05	4
1 3 2 1	45462	Weinek F	. 55956	. 42395	36 . 71210	38.159	25.085	. 43 -0. 06	4
1322	45471	Santbech V	. 57581	. 41 661	. 70319	39. 31 2	24.626	. 67 - 0. 35	5
1323	45498*	Reichenbach K	. 59088	. 4826 <u>1</u>	56 . 64811	42.355	28, 822	.68 +1.82	15
1324	4417A 45500	Piccolom. P	. 50559	. 50717	41 . 70012	35.834	30. 424	. 46 +2. 61	16
1325	4083F 45516	Neander Y	.50920	10. 56727	68 . 64762	38.176	34.550	. 83 +0. 43	6
1326	45509	Brenner D	. 50378	. 59091	52 . 63049	38.625	36. 211	. 58 +0. 42	4
1327	45524	Neander R	. 52158	. 54932	.65516	38.520	33. 264	. 24 +2. 59	9
1328	4427E 45574 4425	Neander G	. 57798	. 54954	33 . 60445	43.717	33. 308	. 37 +1. 23	4
1329	45651*	Rheita P	. 55267	. 61440	43 . 56427	44.404	37.878	.45 +1.16	17
1330	4442A 45657	Metius D	. 55071	6 . 67667	48 . 48932	48.378	42.568	. 47 +0. 52	4
1 331	4465 45711* 4506	Steinheil H	15 . 51016	16 . 71601	146 . 47807	46.859	45.682	1.24 +1.29 .85	6
1332	4506 45731 4505	Steinheil G	15 . 53508	14 . 71479 9	102 . 45018 81	49.925	45.628	-0.09 .63	5
1333	4505 45775 4503A	Reimarus H	10 . 57731 12	. 75654 13	. 30267 114	62.333	49.251	- 2. 39 . 60	4
1334	46001	Censorinus W	. 60883	. 01724	. 79508 54	37.442	0.986	+2. 71 . 75	4
			5	5				• • • •	

	B & M	Designation	Е	F	G	Long	Lat	Н	Pl.
			+	-	+	+	-		
1 3 3 5	46005* 4241	Censorinus F	. 60661	. 05507	. 79327 71	37.404	3.156	+0.25	8
1336	46036 4264	Lubbock G	. 63142 8	. 06396	. 77312 57	39.239	3.666	+0.43	5
1337	46101* 4287	Capella D	. 60461	. 11743	. 78726	37.523	6.746	-0.76	12
1338	46104 4285C	Capella H	. 60074 7	.14136	. 78688 49	37.359	8.126	+0.04 .67	10
1339	46119* 4320	Gaudibert J	. 61885 7	. 19308	. 76081 51	39.125	11.137	-0.79	12
1340	46135* 4312	Gutenberg A	. 63368	.15634 11	. 75786 81	39.900	8.992	+0.30	15
1341	46215 4365	Bohnenberg. F	$.617\overline{14}$ 10	. 23515	. 74500 74	39.637	14.664	-0.02 .96	9
1342	46219* 4359	Bohnenberg. G	. 61504 7	. 29497 7	. 72991	40.118	17.173	-1.69 .67	25
1343	46403 4388A	Santbech F	. 60294	. 431 39 9	. 67131 70	41.928	25.551	+0.25 .82	6
1344	46662 4567	Fraunhofer G	. 66634 9	. 62195 9	. 41249 103	58.240	38.436	+0.85 .74	5
1345	47023* (4255)	Messier A	.72963 6	. 03452 6	. 68240 53	46.915	1.979	-0.68 63	19
1346	47033 4254	Messier	.73802 12	. 03268 13	. 67307 114	47.635	1.873	-1.07 1.33	9
1347	47175*	Goclenius UA	.77116 8	.15264 8	. 61743 62	51.317	8.783	-0.69 .66	8
1348	47249* 4377	Cook B	. 74883 6	. 29687 6	. 59268 45	51.639	17.268	+0.13	12
1349	47515* 4576	Furnerius A	.71527 8	.55216 8	. 42932 66	59.026	33.500	+0.70 .49	11
1350	- * -	(bright spot)	. 82510 6	.02152 6	. 56285 51	55.699	1.234	-1.69 .50	9
1351	48061* 4656	Webb	. 86512 15	.01606 15	. 50026 139	59.961	0,920	-0.91 1.21	4
1352	48069* 4688	Langrenus C	. 86209 14	.09739 14	. 49400 119	60.186	5.598	-2.85 1.02	16
1353	48287* (4699B)	Lame M	. 88194 29	. 27203 29	. 38032 277	66. 672	15.813	-3.08 1.83	8
1354	48331*	Holden V	. 83753 13	. 31646	. 44359 99	62.092	18.464	-1.41 .76	8
1355	49106* 4690	Langrenus M	. 90257 11	.16959 11	. 39356 105	66.440	9.772	-1.49 .72	8

End of Quadrant IV

•

355

APPENDIX 1

Points Common to Tucson and Manchester Triangulations

Tucson	Manch.	Tucson	Manch.	Tucson	Manch.	Tucson	Manch.
2	454	252	676	457	241	852	134
15	469	266	693	464	265	857	90
16	475	274	730	502	103?	863	96
31	465?	282	789	513	68?	893	450
30	464	293	846	534	31	915	430 460
00	-10-1	2/0	040	004	51	915	400
33	470	296	818	535	45	919	451
47	476	297	825	537	42	924	474
48	481	299	867?	543	440	958	472
50	505	307	412	549	413	1003	506
56	484	313	418	587	409?	1013	503
	101	010	110	007	407:	1015	505
69	492	322	426	589	400	1024	514
94	529	327	424	596	397?	1028	491
100	574?	328	392	605	423	1040	516
110	535	329	444	611	391	1041	521?
119	528	331	420	626	390	1056	545
							010
122	539?	341	398	649	374	1060	533
130	531	342	394	659	369	1069	570
131	538	343	388	671	341	1088	541
134	537	357	372	677	342	1100	523
135	549	378	358	691	346	1140	554
	• - /		000		010		001
136	555	381	351	708	332	1144	584
141	560	388	367	712	333	1159	612
144	593?	391	289?	713	325	1211	598
145	622	396	258?	715	355	1216	638
153	682?	405	366	717	323	1219	613
							010
154	657?	417	330	730	324	1230	649
159	572?	· 428	255?	742	268	1251	640
169	596	429	229?	779	207?	1273	663
170	600	440	300	781	217	1284	767
172	573	441	327	786	272	1302	674
. —	- · ·		•				
180	589	445	315	7 89	274	1309	668
198	689?	446	299	811	210	1317	700
202	620	449	295	812	218	1325	706
206	642	451	291	827	148	1347	800
247	644	452	286	839	158	1354	868
-		• • • • •					

.

APPENDIX 2

ADJUSTMENT OF SECONDARY POSITIONS

		Bruce			Blagg	
(2) (3) Diffs. Means	+. 00685 ± 7 +. 00680 ± 3 +. 00005 +. 00681 ± 3	$\begin{array}{c} +.\ 02096 \pm 7 \\ +.\ 02081 \pm 3 \\ +.\ 00015 \\ +.\ 02083 \pm 3 \end{array}$	$ \begin{array}{r} +1.\ 00106\ +\ 61\\ +1.\ 00057\ +\ 36\\ +\ .\ 00049\\ +1.\ 00075\ +\ 31 \end{array} $	+. 02591 <u>+</u> 7 +. 02582 <u>+</u> 5 +. 00009 +. 02585 <u>+</u> 4	+. 02178 ± 7 +. 02166 ± 5 +. 00012 +. 02170 ± 4	+. 99990 + 57 +. 99996 + 36 00006 +. 99994 + 30
mouno		_ Triesnecker J	-	_	W. Bond B	_
(2) (3) Diffs. Means	$\begin{array}{r} +.\ 04287 \ \underline{+} \ 9 \\ +.\ 04287 \ \underline{+} \ 5 \\ +.\ 00000 \\ +.\ 04287 \ \underline{+} \ 4 \end{array}$	+. 05726 ± 9 +. 05717 ± 5 +. 00009 +. 05719 ± 4	+ .99893 + 78 + .99818 + 37 + .00075 + .99832 + 33	+. 05536 <u>+</u> 9 +. 05552 <u>+</u> 10 00016 <u>+</u> +. 05544 <u>+</u> 7	+. 90596 + 9 +. 90638 +10 00042 +. 90617 + 7	+. 41662 + 79 +. 41787 + 85 00125 +. 41725 + 58
		Democritus A			Arago B	
(2) (3) Diffs. Means	+. 25509 + 9 +. 25524 + 7 00015 +. 25518 + 6	+. 87921 + 9 +. 87916 + 7 +. 00005 +. 87918 + 6	$\begin{array}{r} + \ .39848 \pm 79 \\ + \ .40161 \pm 54 \\ - \ .00313 \\ + \ .40061 \pm 45 \end{array}$	+. 35448 <u>+</u> 7 +. 35446 <u>+</u> 5 +. 00002 +. 35447 <u>+</u> 4	$\begin{array}{r} +.\ 06041 \pm 7 \\ +.\ 06037 \pm 5 \\ +.\ 00004 \\ +.\ 06039 \pm 4 \end{array}$	+. 93247 + 63 +. 93358 + 42 00111 +. 93324 + 35
		Bessel A			Hall K	
(2) (3) Diffs. Means	+. 32517 <u>+</u> 7 +. 32507 <u>+</u> 3 +. 00010 +. 32509 <u>+</u> 3	+. 41852 + 7 +. 41847 + 3 +. 00005 +. 41849 + 3	$\begin{array}{r} + .84785 \pm 61 \\ + .84784 \pm 22 \\ + .00001 \\ + .84784 \pm 21 \end{array}$	+. 45746 + 8 +. 45743 + 5 +. 00003 +. 45744 + 4	+. $58123 + 8$ +. $58127 + 5$ 00004 +. $58126 + 4$	+. $67277 + 73$ +. $67217 + 38$ +. 00010 +. $67230 + 34$
		Macrobius B			Tralles B	
(2) (3) Diffs. Means	+. 61050 ± 6 +. 61054 ± 6 00004 +. 61052 ± 4	+. 35734 ± 6 +. 35749 ± 6 00015 +. 35741 ± 4	+. 707 23 + 73 +. 707 47 + 48 00024 +. 70740 + 40	+. 68721 ± 8 +. 68734 ± 8 $00013 \pm$ +. 68728 ± 6	+. 45821 + 8 +. 45840 + 8 00019 +. 45830 + 6	+. 56430 + 73 +. 56357 + 62 00073 +. 56388 + 47
		Archimedes A			Gambart G	
(2) (3) Diffs. Means	09844 <u>+</u> 8 09834 <u>+</u> 4 00010 <u>-</u> 09836 <u>+</u> 4	+. 47013 + 8 +. 47023 + 4 00010 +. 47021 + 4	+. 87778 + 70 +. 87728 + 35 +. 00050 + +. 87738 + 31	$\begin{array}{r} \ 20816 \pm 6 \\ \ 20812 \pm 4 \\ \ 00004 \\ \ 20813 \pm 3 \end{array}$	+. 03455 ± 7 +. 03435 ± 4 00020 +. 03440 ± 3	+. 97687 + 57 +. 97764 + 30 00077 +. 97747 + 27
		Laplace A			Milichius	
(2) (3) Diffs. Means	$\begin{array}{r}32655 \pm 9 \\32637 \pm 10 \\00018 \\32646 \pm 7 \end{array}$	+. 69060 + 9 +. 69077 +10 00017 +. 69068 + 7	+. 64269 <u>+</u> 81 +. 64358 <u>+</u> 79 00089 +. 64314 <u>+</u> 57	$\begin{array}{c}49500 \pm 11 \\49501 \pm 2 \\ +.00001 \\ \hline \\49501 \pm 2 \end{array}$	+. 17398 ± 11 +. 17407 ± 2 00009 +. 17407 ± 2	+. 85218 + 97 +. 85149 + 20 +. 00069 +. 85151 + 20
		Diophantus B			Mairan E	
(2) (3) Diffs. Means	46917 <u>+</u> 8 46917 <u>+</u> 5 .00000 46917 <u>+</u> 4	+. 48577 + 9 +. 48569 + 5 +. 00008 +. 48571 + 4	+. 73633 + 74 +. 73697 + 39 00064 +. 73683 + 35	47728 +11 47718 + 5 00010 47720 + 5	+. 61223 +11 +. 61244 + 5 00021 +. 61240 + 5	+. 62793 +101 +. 62870 + 38 00077 +. 62860 + 36
		Lansberg A			Wollaston	
(2) (3) Diffs. Means	$\begin{array}{r}51647 + 7 \\51640 + 3 \\00007 \\51641 + 3 \end{array}$	+. 00351 ± 7 +. 00340 ± 3 +. 00011 +. 00342 ± 3	+. $85648 + 66$. $85610 + 26$ +. 00038 +. $85615 + 24$	62810 +11 62789 +12 00021 62800 + 8	+. 50831 <u>+12</u> +. 50847 <u>+12</u> 00016 +. 50839 <u>+</u> 8	+. 58630 +113 +. 58656 +100 00026 +. 58645 + 75

		Rümker E			Reiner E	
(2)	65485 <u>+16</u>	+. 62367 <u>+</u> 18	+. 42405 +169	$\begin{array}{c}76016 \pm 12 \\76016 \pm 5 \\ .00000 \\76016 \pm 5 \end{array}$	+. 03360 +12	+. 64711 +108
(3)	65445 <u>+23</u>	+. 62381 <u>+</u> 22	+. 42343 +203		+. 03335 ± 5	+. 64798 + 41
Diffs.	+. 00040	00014	+. 00062		+. 00025	00087
Means	65472 <u>+</u> 13	+. 62373 <u>+</u> 14	+. 42380 +130		03339 ± 5	+. 64787 + 38
		Reiner A			Galilaei A	
(2)	77819 +13	+. 08961 +12	+. 61883 <u>+</u> 125	87160 <u>+10</u>	+. 20277 +10	+. 44238 <u>+</u> 91
(3)	77810 + 7	+. 08977 + 7	+. 62018 <u>+</u> 53	87148 <u>+</u> 6	+. 20276 ± 6	+. 44363 <u>+</u> 51
Diffs.	00009	00016	00135	00012	+. 00001	00125
Means	77812 + 6	+. 08973 + 6	+. 61997 <u>+</u> 49	87151 <u>+</u> 5	+. 20276 ± 5	+. 44333 <u>+</u> 44
		Casatus C			Turner F	
(2)	15333 +14	95041 +14	+. 26301 +136	24345 <u>+</u> 7	$\begin{array}{r}02762 \pm 7 \\02711 \pm 5 \\00051 \\02728 \pm 4 \end{array}$	+. 96955 <u>+</u> 64
(3)	15319 + 8	95024 + 8	+. 26464 + 79	24353 <u>+</u> 5		+. 96970 <u>+</u> 43
Diffs.	00014	00017	00168	+. 00008		00015
Means	15322 + 7	95028 + 7	+. 26423 + 68	24350 <u>+</u> 4		+. 96965 <u>+</u> 36
		Nicollet			Fra Mauro B	
(2)	19986 +10	37261 + 9	+. 90600 <u>+</u> 85	36793 <u>+</u> 8	$\begin{array}{r}06949 \pm 8 \\06968 \pm 4 \\ +.00019 \\06964 \pm 4 \end{array}$	+. 92753 <u>+</u> 69
(3)	19997 + 4	37267 + 4	+. 90491 <u>+</u> 35	36783 <u>+</u> 4		+. 92686 <u>+</u> 36
Diffs.	+. 00011	+. 00006	+. 00109	00010 <u>-</u>		+. 00067
Means	19995 + 4	37266 + 4	+. 90507 <u>+</u> 32	36785 <u>+</u> 4		+. 92700 <u>+</u> 32
		Schiller A			Gassendi J	
(2)	$\begin{array}{r}41447 \pm 9 \\41447 \pm 6 \\ .00000 \\41447 \pm 5 \end{array}$	73246 + 9	+. 53853 <u>+</u> 81	55932 <u>+10</u>	36748 +10	+. 74225 + 91
(3)		73260 + 6	+. 53952 <u>+</u> 50	55935 <u>+</u> 3	36756 + 3	+. 74176 + 22
Diffs.		+.00014	00099	+. 00003	+. 00008	+. 00049
Means		73256 + 5	+. 53925 <u>+</u> 43	55935 <u>+</u> 3	36755	+. 74179 + 21
		Doppelmayer J			Gassendi G	
(2)	59800 + 9	41390 + 9	+. 68573 + 81	67178 + 9	28749 + 9	+. 68217 + 82
(3)	59782 + 4	41399 ± 4	+. 68471 + 30	67185 + 7	28752 + 7	+. 68136 + 59
Diffs.	00018	+. 00009	+. 00102	+. 00007	+. 00003	+. 00081
Means	59785	41397 ± 4	+. 68483 + 28	67182 + 6	28751 + 6	+. 68164 + 48
		Schickard H			Flamsteed D	
(2)	64178 +17	68812 +17	+. 33744 +158	70381 <u>+</u> 9	$\begin{array}{r}05492 \pm 9 \\05512 \pm 6 \\ +.00020 \\05506 \pm 5 \end{array}$	+. 70749 + 79
(3)	64187 +22	68832 +22	+. 33729 +211	70378 <u>+</u> 6		+. 70686 + 50
Diffs.	+. 00009	+. 00020	+. 00015	00003 <u>-</u>		+. 00063
Means	64181 +13	68819 +13	+. 33739 +127	70379 <u>+</u> 5		+. 70704 + 42
		Zupus A			Damoiseau E	
(2)	76755 +10	29546 +10	+. 56759 <u>+</u> 88	84705 + 8	09081 + 8	+. 52098 + 72
(3)	76742 + 5	29555 + 5	+. 56825 <u>+</u> 38	84697 + 5	09058 + 5	+. 52162 + 38
Diffs.	00013	+. 00009	00066	00008	00023	00064
Means	76745 + 4	29553 + 4	+. 56815 <u>+</u> 35	84699 + 4	09064 + 4	+. 52148 + 34
		Grimaldi B			Seeliger	
(2)	93322 +29	05055 +28	+. 35324 +263	+. 05249 + 6	03810 ± 6	+. 99885 <u>+</u> 54
(3)	93314 +23	05041 +23	+. 35344 +210	+. 05242 + 4	03815 ± 4	+. 99868 <u>+</u> 31
Diffs.	00008	00014	00020	+. 00007	+. 00005	+. 00017
Means	93317 +18	05047 +18	+. 35336 +164	+. 05244 + 3	03813 ± 3	+. 99872 <u>+</u> 27

		Schomberger A			Nicolai A	
(2) (3) Diffs. Means	+. 07954 <u>+15</u> +. 08004 <u>+24</u> 00050 +. 07969 <u>+</u> 13	98099 +17 98043 +26 00056 98082 +14	+. 18137 +156 +. 17579 +250 +. 00558 +. 17981 +132	+. 29565 ± 10 +. 29560 ± 6 +. 00015 +. 29561 ± 5	67439 <u>+10</u> 67441 <u>+</u> 6 +. 00002 67440 <u>+</u> 5	+. 67611 + 85 +. 67709 + 43 00098 +. 67689 + 38
		Alfraganus C			Rothmann K	
(2) (3) Diffs. Means	+. 30917 ± 6 +. 30913 ± 4 +. 00004 +. 30914 ± 3	$\begin{array}{c} \ 10606 \pm 6 \\ \ 10606 \pm 4 \\ . \ 00000 \\ \ 10606 \pm 3 \end{array}$	+. 94620 ± 50 +. 94619 ± 31 +. 00001 +. 94619 ± 26	+. 36170 ± 6 +. 36173 ± 3 00003 +. 36172 ± 3	48218 + 6 48220 + 3 +. 00002 48220 + 3	+. 79986 + 55 +. 79945 + 26 +. 00041 +. 79952 + 24
		Boussingault R			Moltke	
(2) (3) Diffs. Means	+. 32472 +11 +. 32480 +15 00008 +. 32475 + 9	$\begin{array}{c}90165 +11 \\90140 +15 \\00025 \\90156 + 9 \end{array}$	+. 28445 + 98 +. 28694 +134 00249 +. 28531 + 79	+. 40933 <u>+</u> 6 +. 40933 <u>+</u> 4 .00000 +. 40933 <u>+</u> 3	$\begin{array}{r}00973 \pm 6 \\00972 \pm 4 \\00001 \\00972 \pm 3 \end{array}$	+. 91198 + 55 +. 91219 + 28 00021 +. 91215 + 25
		Reimarus H			Bohnenberger G	
(2) (3) Diffs. Means	+. 57689 <u>+</u> 17 +. 57731 <u>+</u> 12 +. 00042 +. 57717 <u>+</u> 10	75690 <u>+</u> 16 75654 <u>+</u> 13 00036 75668 <u>+</u> 10	+. 30271 +141 +. 30267 +114 +. 00004 +. 30268 + 89	+. 61496 <u>+</u> 8 +. 61504 <u>+</u> 7 00008 +. 61500 <u>+</u> 5	29493 <u>+</u> 8 29497 <u>+</u> 7 +. 00004 29495 <u>+</u> 5	+. 73056 <u>+</u> 73 +. 72991 <u>+</u> 53 +. 00065 +. 73015 <u>+</u> 43
		Furnerius A			Langrenus C	
(2) (3) Diffs. Means	+. 71498 +18 +. 71527 + 8 00029 +. 71522 + 7	55238 <u>+18</u> 55216 <u>+</u> 8 00022 55220 <u>+</u> 7	+. 43027 +159 +. 42932 + 66 +. 00095 +. 42946 + 61	+. 86232 <u>+16</u> +. 86209 <u>+</u> 14 +. 00023 <u>-</u> +. 86219 <u>+</u> 11	09731 +16 09739 +14 +. 00008 09736 +11	+. 49733 +137 +. 49400 +119 +. 00333 +. 49543 + 90

-

· · · · ·

APPENDIX 3

DATA FOR PHOTOGRAPHS

Photo		Date	Time	ť	<i>b'</i>	sin <i>s'</i>	Obs.	Ply
Yerkes	1170	1960 July 8	05 49 32	-0.40	-5.28	. 004908	LPL	1
Yerkes	1269	1960 Aug 1	01 53	-6.45	-4.92	.004681	LPL	1
Yerkes	482	1959 Sep 18	08 12 17	+3.90	+1.18	. 004461	LPL	ı
Paris	īv	1898 May 28	12 39 18*	-7.55	+5.87	. 004483	Saunder	1
Paris	v	1899 Mar 22	08 01 06*	-0, 54	+4.48	.004378	Saunder	1
Paris	VI	1899 Oct 22	04 43 39*	+6, 34	+0.50	.004540	Saunder	1
Paris	VII	1899 Oct 25	07 00 03*	+3.73	+4. 62	.004388	Saunder	1
Yerkes	VIII	1901 Sep 03	02 05 am**	+l. 77	-0.06	.004810	Saunder	ı
Yerkes	IX	1901 Nov 20	07 30 pm**	-7.26	-4.92	.004710	Saunder	1
Golosseyevo	Α	1959 Mar 23	22 22 46	-4.39	+3.45	.004806	Gavrilov	l
Golosseyevo	В	1959 jul 21	22 36 12	+5.88	-3.74	.004655	Gavrilov	2
Golosseyevo	С	1959 Jul 21	21 03 31	+3.84	-5.08	.004693	Gavrilov	2
Golosseyevo	D	1961 Apr 29	23 09 31	-5.43	-4.56	. 004 559	Gavrilov	2
Golosseyevo	Е	1961 Oct 23	17 06 17	+4. 28	+6. 77	.004742	Gavrilov	2
Pulkovo	F	1962 Apr 17	20 51 44	-1.02	-4. 22	. 004332	Gavrilov	3
N-8 (USN)		1964 Oct 21	07 37 10	-3.91	+5. 88	.004779	ACIC	1
Pic du Midi	41	1961 Mar 23	20 30 09	+4.01	+6. 63	. 004396	ACIC	5
Pic du Midi	72	1961 Aug 18	20 58 55	7.76	-5.91	.004508	ACIC	5
Pic du Midi	89	1961 Dec 21	22 14 29	+5, 20	+5.54	.004513	ACIC	5
Pic du Midi	98	1962 Jan 27	04 39 29	-4.73	-5.26	. 004372	ACIC	5
Pic du Midi	118	1962 Apr 21	00 16 00	-4.16	-5.89	. 004411	ACIC	5
Pic du Midi	128	1962 May 17	21 52 35	-3. 41	-5.91	. 004417	ACIC	5
Pic du Midi	139	1962 Aug 10	20 52 58	-6.88	-4.84	.004515	ACIC	5
Pic du Midi	148	1962 Aug 21	03 59 48	+5. 49	+7.31	. 004761	ACIC	5
Pic du Midi	174	1962 Oct 17	00 55 05	÷7.46	+5. 72	. 004759	ACIC	5
Pic du Midi	183	1962 Nov 13	22 39 43	+6.64	+5.02	.004766	ACIC	5
Pic du Midi	195	1963 Feb 09	03 04 50	+3.79	-2.45	. 004466	ACIC	5
Pic du Midi	199	1963 Mar 05	22 16 49	+5.71	+0. 89	. 004550	ACIC	5
Pic du Midi	279	1963 Dec 23	19 41 48	-6.96	+7. 23	. 004662	ACIC	5
Pic du Midi	281	1963 Dec 25	20 04 27	-4.82	+7.00	.004795	ACIC	5
Pic du Midi	291	1964 Jan 05	04 59 15	+6.75	-6.14	. 004492	ACIC	5
Pic du Midi	323	1964 Mar 27	22 12 35	+4.89	-6.11	.004479	ACIC	5
Pic du Midi	358	1964 Aug 25	00 47 19	-5.06	+7.28	.004565	ACIC	5
Pic du Midi	359	1964 Aug 26	01 59 03	-4.88	+7.18	.004613	ACIC	5
Pic du Midi	426	1965 Feb 20	02 36 04	+7.38	-4.77	.004586	ACIC	5
USN	4027	1965 Apr 16	07 58 35	+5. 20	-4.00	. 004580	ACIC	5
USN	5401	1965 Sep 11	07 09 02	-3.58	+7.01	. 004405	ACIC	5

-

TABLE OF CONTENTS

No. 127	A Comparator Method for Determining Relative Lunar Altitudes by D. W. G. Arthur	239
No. 128	Relative Lunar Altitudes from Three Yerkes Photographs by D. W. G. Arthur	247
No. 129	Selenodetic Measures on 25 Star-trailed Photographs by D. W. G. Arthur	269
No. 130	A New Secondary Selenodetic Triangulation by D. W. G. Arthur	303
No. 131	The Tucson Selenodetic Triangulation by D. W. G. Arthur	313