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ABSTRACT

The paper presents details of the direction-cosine method for the determination of relative lunar altitudes from shadow measures

on earth-based lunar photographs.

1. Introduction

This paper gives the special mathematics and
computing methods for the determination of
relative lunar altitudes from measures on lunar
photographs. Z. Kopal (Kopal et al. 1960) has
written on the same topic, but there is surprisingly
little in common between his exposition and my own.
The principal difference arises from the mathematical
language itself. Kopal chose to develop the com-
putations in terms of the formulas of spherical
trigonometry. I regard these as appropriate for the
reduction of telescopic measures, but they are not
particularly efficient for the processing of measures
on photographs. The latter are effectively made at
one instant and, thus, all the data for the photograph
can be represented by a relatively small number of
plate constants. It may turn out, however, that the
direction-cosine method has no special advantage
for photography from space vehicles, and that the
more general approach of Kopal will prove more
useful for this.

The other differences come from the measuring
techniques. Kopal’s exposition relates to the micro-
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densitometer measures of photographs with very
small fields. However, the portion of the lunar
surface registered in each of the photographs used
at Manchester is too small to permit the use of
standard points for the orientation of the measuring
system to the photograph, or to allow the determina-
tion of the selenographic positions of the peaks.
Thus a discussion of these topics would have been
irrelevant. In contrast, the method developed here
relates to comparator measures on photographs of
larger format. The photographs of the LPL Catalina
61-in. reflector, which cover areas a little larger than
the fields of Photographic Lunar Atlas (Kuiper et al.
1960), are the kind of photographs I have in mind.
Each photograph includes sufficient controls to
permit a rigorously accurate orientation of the
photograph in the comparator. Also, the comparator
measures themselves determine the selenographic
coordinates of the peaks, thus eliminating one of the
principal drawbacks of the Manchester methods.
The effects of approximations at each stage are
discussed. Although Kopal claimed completeness in
this, he failed to examine the effects of a deviation of
the telescope axis from the direction to the center
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of face. For the Manchester measures these errors
are negligible.

The LPL measures are made with a normal two-
screw comparator reading to 1 micron in each
coordinate. Since the stage has a divided circle
reading to 20", the orientation of the photograph can
be set with an error of less than 1 minute of arc.
Clearly the comparator pointings at the ends of the
shadows are less precise and more subjective than
the microdensitometer records, with the result that
the comparator method is not particularly precise
for short shadows. However, it is always considerably
more rapid; the complete comparator readings for
one shadow and the position of the peak are obtained
in less than one minute.

Each method thus has its strong points and its
drawbacks. The microdensitometer method is
usually more efficient for short shadows, for which
positional and orientation errors have the least
effect. The comparator method is usually more
efficient for long shadows when the errors of the
shadow measures are least effective and the positional
errors have the greatest effect.

2. The Coordinates

If A and B are the selenographic longitude and
latitude of the peak, its standard direction-cosines
are

& = cos fsind
n = sin . 1)
{ =cosficosi

These should not be confused with the rectangular
coordinates, for which we reserve the notation
(E, F, G). If the absolute altitude H and the co-
ordinates are both in units of the moon’s radius,
then

E=(1+ H) = (1 + H)cos fsin A
F=(0+Hy=(1+ H)sinf . (V3)
G=(1+ H){ = (1+ Hcos fcos

A sharp distinction must be made here between the
true (&, n, {) of the peak, and the corresponding
values for its straight-line projection on the mean
sphere. The true values are not known, whereas the
values for the projected point are known with some
precision for the standard points and are listed in
Comm. No. 11 (Arthur 1962). The differences in
&, n, and { between the true and projected values
depend on the absolute altitude H and the distance
from the center of face. Since H is generally not
known, it should be realized that the &, 5, { values

derived either from maps or from measures on
single photographs tend to be increasingly unreliable
as we leave the central regions of the disk. It is
doubtful if reliable relative altitudes can be derived
at all outside the limits of A = 130° because of the
limitations of the positional data. Within this zone,
the positions obtained from measures on single
photographs are two to three times more precise
than those taken from the best maps.

3. The Sun’s Altitude

The sun’s elevation ¢ is the inclination to the lunar
horizon of the direction to the sun. At any instant
it is a function of position on the lunar surface.

The sun’s selenographic coordinates at OH of
each day are given in the ephemeris as the colongi-
tude ¢ _ and latitude b . For the instant of photog-
raphy the values can be derived by simple linear
interpolation: b, changes very slowly while c
increases at almost constant rate. The colongitude
¢ is connected to the sun’s selenographic longitude
! . by

l o+ cy=90° 3)
The sun’s standard direction-cosines are
&, =cosbcoscg,
Ne=sinb . 4
(o= cosb®sinc ©
By definition, the angle between the lunar radii

through the peak and sun is 90° — ¢; hence, by a
well-known result in direction-cosine analysis,

sin ¢ = cos (90° — @) = &£ + . + .. ()
4. The Finite Distance Correction for the Shadow

Let (I', b) be the topocentric librations, that is,
the selenographic longitude and latitude of the
telescope at the instant of exposure. The computa-
tion of these by the method of Atkinson (1951) is
described in Comm. LPL No. 10. The derivation of
the elements of the orthogonal matrix

a, b, ¢
e f g
i j, k
from I’ and b’ is given in Comm. LPL No. 60. The

perpendicular distance of the peak from the plane
of the limb at any instant is

Z = iE + jF + kG (6)

in units of the moon’s radius. The distance from the
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plane to the telescope is cosec s’, where s’ is the
augmented semidiameter of the moon. Hence, the
distances of the peak and the limb plane from the
telescope are cosec s’ — Z and cosec s’ respectively;
clearly the shadow is scaled up in the ratio cosec s':
cosec s' — Z in the conical projection on the plane
of the limb. Hence the shadow is corrected for this
by multiplying its measured length by

1 —Zsins'.

Note an approximation here, since in general the
lower end or tip of the shadow is at a distance other
than Z from the plane of the limb. However, at the
center of face, where Z is large, the variation in Z is
small, while when this variation is large, near the
limb, Z itself is small. Thus in all cases, the use of
the Z of the peak as applying to the entire shadow
does not generate errors as large as 1 percent of the
shadow.

The finite distance correction is incorporated
into the foreshortening correction discussed below.

5. The Foreshortening of the Shadow

Let the axis of the telescope pierce the lunar
surface at the point A4, with coordinates (E ,, F ;, G,).
With sufficient precision, for photographs not cover-
ing the entire disk, 4 can be identified with the lunar
surface detail at the center of the field of view. In
general its coordinates (E,, F,, G,) are not known
and, for practical purposes, are replaced with the
values (£,, n,) interpolated from the grids of the
Orthographic Lunar Atlas (Kuiper, Arthur, and
Whitaker 1961). The set is completed with

la=+JU0 =82 =) ™

This approximation is more than precise enough
for the purpose. The standard direction-cosines of
the telescope are
¢ =cosb'sinl
n =sin b’ , (8)
{' = cos b’ cos !
and hence, its rectangular selenodetic coordinates
reduced to A as origin are

¢ cosecs’ — &,
' cosec s’ — n4,
{ cosecs’ — (.

Introducting proportionals to these, i.e.,

x=¢—¢,sins
y=n —nysms’, )
z={ —{,sins

then the standard direction-cosines of the line from
A to the telescope are

x" = x/\J(x* + y? + 2?)
Y = yNGE + Y+ 2 (10)
2" = z/\J(x* + y? + 2?)

These are therefore the standard direction-cosines of
the axis of the telescope in the sense moon-earth.
Taking (4) into account, the angle between the sun’s
rays and the axis of the telescope is found from

cosM, =8¢ +nm +0C, (1)

Since the shadows have the same direction as the
sun’s rays, in projection on the plane of the photo-
graph they are shortened in the ratio sin M. This
factor is always positive and is conveniently com-
puted from

sin M, = +./(1 — cos? M) (12)

without recourse to trigonometric tables or routines.
Thus, the measured shadows must be divided by
sin M, to remove the foreshortening. The true
shadow g, in units of the moon’s radius and free of
foreshortening and finite distance effects, is

_Ax-(1 — Zsiny)

rsin M, ’ - (13)

where Ax and r are respectively the measured
shadow length and the radius of the moon at the
scale of the photograph, both in the units of the
measures. The derivation of r is given in Section 11.

For a photograph of the entire disk, it is usual
and appropriate to assume that the axis is aimed
at the center of the disk, in which case M , is replaced
by its selenocentric equivalent M. This is found from

cosM =¢¢. +nn, + (.. (14)

This selenocentric value can differ from the real
value M, by as much as 15, but a more realistic
maximum for the deviation is y = 10". Suppose now
that we use M when we should use M,; what
restrictions must we place on M or M, in order not
to introduce an error of more than p percent in the
reduced length of the shadow? Clearly, sin M and
sin M, must not differ by more than p percent of
their values. Hence the condition

sin (M + y) — sin M < 0.01 p sin M.
Taking y as 10', this reduces to
[tan M| > 1/3.44 p. 15)

For 1 percent precision, M is limited to the range
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16° to 164°, which is not at all restrictive, since
relative height work is never attempted outside this
range. However, for a precision of one part in one
thousand, M is restricted to the range 70° to 110°.
Very little relative height work is attempted outside
these limits.

Thus in practice, the error of identifying M , with
M, as Kopal (Kopal et al. 1961) has done in using his
equation 1-18, has virtually no effect on the results,
particularly for the Manchester measures, for which
y is probably much less than 10'. The error of
principle should nevertheless be noted.

6. The Computation of Relative Lunar Altitudes

In Figure 1, P is the lunar peak and T is the tip
of its shadow. The shadow subtends an angle 0 at M
the center of the moon. Since MPT is 90° — ¢ by
definition, then MTP is 90° + ¢ — 0. With all
lengths in units of the moon’s radius we assume that
MT is unity for the present. Then PT = x and
MP =1 + h, where h is the altitude of P relative to
T.

Applying the sine rule to the plane triangle
MPT

sin @ = x cos ¢
h =cos(¢p — 0)secd — 1}' (16)

This is the computing scheme used by Schmidt (1878).
Its only drawback for desk calculations is the
necessity for rather extensive trigonometric tables.
To compute to four significant figures, six-place
tables are required. For high-speed calculations its
requirement for direct and inverse trigonometric
routines is something of a disadvantage. These can
be avoided without approximation by the use of
square root routines, which are about the slowest
of the algebraic operations in the computer. The
scheme (16) can thus be written as

cos ¢ = +./(1 — sin? ¢)
sin @ = y cos ¢
cos @ = +./(1 — sin? 0) . 17
tan ¢ = sin ¢/cos ¢
h=cos@ +sinftan ¢ — 1

In practice there is a preference for approximate
forms. With these in mind, consider the limiting form
of the triangle MPT when y reaches its largest
possible value for a given peak. The shadow PT
then grazes the surface tangentially at T, and
MPT = 90°. This makes ¢ = 8, and from the right-
angled triangle MPT, we have

or

In this situation ¢ has its minimum value and 0 its
maximum value, and

cos ¢min = COs 9max = l/(l + h)’

SN Pin = SiN Opax = /(2h). (19)

The classical measures (Schmidt 1878) show that no
lunar relative altitude exceeds 0.005 of the radius;
hence, from (18) no value of x ever exceeds 0.1.
Writing
cos 0 = (1 — sin? 6)*
= (1 — x* cos® ¢)*
=1-—1y%cos® ¢ — §x*cos*p —...,

Fig. 1
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and substituting this in the expanded form of the
second equation in (16), we have

h=ysing —$x*cos’ ¢ — gx*cos* ¢ —.... (20)
For any peak
3x* cos* ¢ < 0.0000125,

so the quartic term never exceeds 22 m and only
approaches this upper limit for the highest peaks
casting their longest possible shadows. In most
cases the error will not exceed a few meters and can
be neglected. Thus for practical computations we
may use the truncated series

h = ysin ¢ — %% cos? ¢. (21

Since ¢ is derived as its sine, we introduce t for
sin ¢ and write the last as

h, = 1738000(xt — +x% + $x%1?) (22)

for the derivation of the height in meters. The sine
is found from (5), i.e.,

T= éér: + nn.. + CC':/J

in which &, n, { are the values for the peak.

The assumption that MT =1 (T lies on the
mean sphere) is not generally true. Let the absolute
altitude of T be H. Then putting MT = 1 + H and
MP =1+ H + h in Figure 1, we get in place of
(16) its rigorous equivalents

sin @ = y cos ¢/(1 + H) (23)
h=((1+ H)cos(¢p —QNsecdp —H-—-1. (24

Consider the error introduced by using (16) in place
of (23) and (24). An examination of the latter shows
that h is a function of the set ¢, x, H through the set
¢, 0, H. Also in using the approximate equations (16),
it is clear that we have introduced an error 6H =
—H. The resulting error in A is

oh 0¢ dh 00 dh oH
‘Sh-‘s”(wm“fﬁﬁ*ﬁ :aﬁ)-
In this
o0H = —H,
op
o =%
—g—g—=(l + H)sin (¢ — 0) sec ¢,

oh
@—:cos(qb- f)secp— 1= h.

Gibbous

so that

oh = —H[h _ w]

1+ H

Approximating (1 + H) and cos 0 to unity and
eliminating 6 and h with (16) and (21), we are left
with

Sh ~ —1Hy? cos® ¢ (25)

as the error introduced by the use of the approxima-
tion in (16). The distribution of the absolute altitude
H is not known, but H cannot much exceed 0.005
of the radius. On the assumption that the shadow
never exceeds 0.1, then 6h cannot exceed 44 m. This
is an extreme case in which H, h, and y all have their
largest values. In practice dh will rarely exceed
10 m.

7. The Orientation of the Projected Shadow

The rays of the sun that meet the lunar surface
constitute a virtually parallel pencil. Each such
pencil viewed in perspective has two vanishing
points, and in this case, these are clearly the sun and
antisun.

Let M be the angle determined by (14). Then, with
sufficient precision for present purposes, M may be
taken as the angle at the telescope between the
directions to the sun and moon. When M > 90°,
the sun projects on the plane of the limb of the moon,
whereas when M < 90°, the antisun is so projected.
When M = 90° both vanishing points are projected,
but at an infinite distance from the center of the
moon’s disk. In all three cases the distance (in units
of the moon’s radius) of the projected vanishing
point V from the center of the disk is cosec s’
|tan M|, as shown in Figure 2.

Crescent
Phase Phase

M <90°

Fig. 2

M >90°
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The projected shadows are, of course, the pro-
jections of the sun’s rays and are therefore concurrent
at whichever point V is projected.

Let P, = (E,, F,, G,) and P, = (E,, F,, G,) be
two well separated points with known positions,
and let A = (E,, F,, G,) be the point at which the
axis of the telescope meets the lunar surface, as in
Section 5. The positions of these are converted to
the instantaneous coordinates by

X a, b, ¢ E
Y] = e f, g| - |F| .
Z i j, k G (26)

and then to the coordinates of their projections on
the plane of the limb by

X' = X/1 — Zsin s')}

Y = Y/l — Zsins)(" (27)

The set (_, n.., . ) for the subsolar point is pro-
cessed in exactly the same way, treating the direction-
cosines as coordinates. At this point we have the
four sets (X,', ¥,). (X3, Y;)(X,, Y )and(X ), Y)).
Let V be the projected vanishing point. It lies in the
same direction from the center of face (X' =0,
Y’ = 0) as the point (X.. ’, Y.) if the vanishing point
is the sun, and in exactly the opposite direction if
the antisun. The discrimination is made automati-
cally by writing

cosec s’ tan M

and
X, =-SX'
Y, = —SY } (29)

These also place V at the correct distance. The
tangent is found without ambiguity and without use
of trigonometric routines from

+./(1 = cos® M)
cos M '

tan M = (30)
Consider the situation for the photograph of a
limited part of the lunar surface with the point 4 at
the center of the field. The direction AV defines the
direction of the projected shadows at A, and unless
the field is too large, this direction is appropriate for
all the shadows on the photograph. Thus for correct
orientation, the photograph is oriented so that AV
is parallel to measuring motion.

Let the positive (counterclockwise) rotation from
the X'-axis to the direction of the line P,P, be «,.

Then
tana; = (Y, — Y )(X,' — X)) (31

Similarly if a, is the positive rotation from the
X'-axis to the line AV,

tana, = (Y, — YWX, — X)) (32)
The positive rotation from P, P, to AV is
a=a, —a,. (33)

To commence the measures, the photograph is
oriented so that PP, is parallel to the x-direction.
The photograph is then rotated clockwise through
o to bring AV into the x-direction.

8. The Measures of the Shadow Lengths
and Coordinates

The first pointing is made on the peak and
recorded as (x, y). Without change of y, the second
pointing is made on the tip of the shadow and
recorded as (x’, y). The length of the shadow is

Ax = |x — x| (34)

In comparators with digitized output, such as that
used at LPL, the failure of the observer to complete
the pair (x, y), (x', y) produces a situation in which the
subsequent reductions are incorrect. Hence the
first computer run scans the output and ensures that
the readings are paired, with identical y-readings in
each pair. The final outputs of the scanning program
are the plate coordinates (x, y) for the peak and
Ax for its shadow.

9. The Reduction of the Coordinate Measures

Before the shadow measures are commenced, at
least four standard points are measured and re-
corded separately. The (X', Y') values of these are
prepared as in (26) and (27). If the original negative
is on glass the procedure described in Comm. LPL
No. 60 may be used to derive the (&, n, {) for the
projection of the peak on the mean sphere.

The situation is different when the original
negative is on film. As the film shrinkages may be of
the same order or larger than the differential
refractions, the procedure of Comm. LPL No. 60 is
no longer directly applicable. In this case the affine
transformation

X' =px—qy+h
Y'=qpx + poy + k (33

is applied to the standard points to derive the six
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coefficients from two sets of 3 x 3 normals. Equation
(35) is then applied to the (x, y) of each peak to
derive (X', Y'). With sufficient precision the instan-
taneous direction cosines are found from

(36)

X=X —-X2Zsins
Y=Y —-YZsins(

where
Z=+J(1-X?*-7Y?
The set (X, Y, Z) is completed with
Z=+J( - X*-Y?

and converted to (&, 5, {) with the inverse of (26),
ie.,

E=aX + eY +iZ

n=bX +fY +jZ;.

{=cX +9gY +kZ

These are the values for the projection of the point
on the mean sphere. They may be substituted for the
unknown true values of the peak, but with decreasing
precision with increasing distance from the center
of face.

10. The Selenographic Coordinates
of the Tips of the Shadows

In order to pinpoint the two positions involved
in the relative height, it is usual to quote £ and » for
both the peak and the tip of its shadow. The values
derived in (40) apply to the peak. Let (¢4, ) be the
values for the tip of the shadow. Since the length of
PT (in Fig. 1) is x and its direction-cosines are

(=& —ne» — L) we obviously have
ér=¢&— X8 .
Hr =" — XNe

11. The Radius for the Photograph

The coefficients p,, q, and p,, g, found in the
least squares calculation of Section 9, both provide
estimates of the radius r of the photograph. These
are

ry = 1//(p,* + 9,
and

r, = 1//(p,* + 453

Unfortunately, these are usually slightly discordant
because of the affine nature of (35). However since
r is required merely for the reductions of the shadow
lengths, and since these are parallel to the x-
direction, the appropriate value is clearly r,.
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