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ABSTRACT

This paper describes a method for determining the moon’s constants of rotation and the selenodetic coordinates of a num-
ber of primary points starting from rectangular coordinate measures on scaled and oriented lunar photographs. The new
features are the use of Mosting A as the origin of selenodetic coordinates and the employment of rigorous formulas in place
of the approximate differential formulas of classical selenodesy. The least squares analysis takes into account the algebraic

correlation introduced in the reductions of the observed points.

1. Introduction

he constants of the moon’s rotation, namely the

ratios of the moments of inertia, 8 = (C — A)/B
and y = (B — A)/C, have in the past always been
determined from heliometer measures that connect
the fundamental point (Mosting A) to the bright limb,
according to the scheme set out by Bessel in 1839.
Technically there has been relatively little advance
since Bessel’s time, except for a more thorough
working out of the reduction scheme by Hayn
(1902), and a rigorous application of the calculus
of observations by Koziel (1962). At present, the
best values we have for 8 and y come from four
relatively elderly heliometer series which were com-
bined into a single long series by Koziel (1963).

When all possible credit has been given to those
responsible for these numerous heliometer measures
and their reductions, it must still be remarked that
the heliometer technique belongs to the last cen-
tury. It is a pre-photographic method with important
limitations in both measurement and reduction. The
measures are slow, and the net results of an eve-
ning’s work are only seven to ten distances from the
fundamental point to the bright limb: these have to
be reduced to a single instant. A photograph con-
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taining the same information can be obtained in a
few seconds.

However, there is another limitation just as im-
portant. The Bessel-Wichmann scheme for reducing
the measures involves assumptions about the nature
of the lunar limb. The bright limb, smoothed to a
circle, is supposed to define an invariant point in the
moon’s interior, the so-called center of figure. When
the measures attain a certain level of precision, this
concept is not valid, since the center of figure is then
a blurred region whose dimensions are of the same
order as the errors of the measures. Later refine-
ments, such as those by Yakovkin, do not really
surmount the difficulty.

It is of interest, of course, to relate the selenodetic
coordinate system to the moon’s centroid; if this is
required, assumptions of some sort concerning the
limb and its relation to the centroid become neces-
sary. Nevertheless, as shown below, the determina-
tion of the constants of rotation and of differential
selenodetic coordinates can be divorced completely
from relations between the limb and the centroid.
An approach of this type is essential if earth-based
selenodesy is to progress beyond the limitations set
by the heliometer method. The new method must
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come from the use of photographs that permit a
large number of effectively simultaneous differential
measures between well-defined spots on the lunar
surface, with no reference to the limb.

The lunar photography associated with the new
method must have special characteristics. It must
be refractor photography, so that there is little pos-
sibility of distortion of the images. Furthermore,
both the scale and the orientation of the lunar images
must be known with a precision similar to that of
the heliometer measures. The technique for using
star trails to obtain refraction-free photographic
coordinates oriented on the moon’s hour circle is
described in Comm. LPL No. 72, while the tech-
nique for obtaining and transferring precise focal
lengths is given in Comm. Nos. 73 and 74.

The following assumes that the photographic
coordinates are free of refraction and are oriented
with the y-axis along the hour circle through the
moon’s center of face. Only the geometry of the
problem is discussed, since a recent paper by Eck-
hardt (1965) provides sufficiently precise values for
the physical librations p, o, and 7 as functions of
the ratios 8 and y.

2. Computation of the Selenocentric Coordinates
(1”7, b”) of the Exposure Station

The selenocentric coordinates of the exposure
station are required for the reduction of each mea-
surement and are usually obtained by differential
formulas. These are well suited to desk computations
but are not rigorous. In connection with high-speed
computers, they have no advantages and should be
put aside. We now introduce the usual Eulerian
angles, as used by Hayn and Koziel:

6 = inclination of true lunar equator to ecliptic;

¥ = longitude of descending node of true lunar
equator on ecliptic;

¢ = arc measured in the plane of the true lunar
equator from its descending node on eclip-
tic to the moon’s first radius.

The lunar first radius corresponds to zero in longi-
tude and latitude in the lunar system of coordinates.
The above Eulerian angles are connected to the
physical librations p, o, 7 by the well-known rela-
tions

6=I1+p
4’25-3 + 7T ’ (1)
d+¢Y=q+180° + 7
in which ¢ is the moon’s mean longitude, I is the

mean value of 6 and is the constant inclination of
the Cassini laws, and & is the longitude of the
ascending node of the lunar orbit. The arc ¢ is most
conveniently found from

¢ =180°+ (¢ — Q) + (r — o). (2)

Thus 6, ¢, and ¢ are readily found from p, o, and
7, which in turn are interpolated from Eckhardt’s
tables.

Now let (I”, b”) be the selenographic longitude
and latitude of the exposure station, referred to the
moon’s true equator and true first radius. Then we
have

cos (¢ + I") cos b” = — cos (' — ¢ — N) cos 8’

sin (¢ + I”) cos b” = sin B’ sin § —
sin(M — ¢ — N)cos B cos 6)

sin b” = —sin 8’ cos 6 —
sin (" — ¢ — N) cos 8’ sin
3)

In these (X', B’) are the apparent longitude and lati-
tude of the moon at the exposure station while N is
the nutation in longitude. The above are nothing
more than generalizations of the well-known formu-
las for the geocentric optical librations, to which they
degenerate when p = o0 = 7 = 0,

or  6=Iy¢y=g,¢=180°+q—qQ.

It should be noted that (3) are completely rigorous
and introduce no errors beyond those imposed by
the limitations of the computer.

3. Computation of the True Position Angle

To determine the position angle of the moon’s
true axis, that is, the perpendicular to the moon’s
true equator, we must introduce the earth’s true
equator. Let

i’ = inclination of moon’s true equator to
earth’s true equator;

A" =arc of true equator of moon from its
ascending node on the true equator of
the earth to its ascending node on the
ecliptic of date;

Q" = arc of true equator of the earth from the
true equinox of date to the ascending
node of the true lunar equator;

€ = true obliquity.
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From the spherical triangle of Figure 1,
sin A’ sin ¥ = — sin e sin (Y + N)

cos A\’ sin i = sin 0 cos € —
cos @sinecos (Y + N)}, (4)

cos i’ =cos 0 cos € +
sin 0 sin € cos (Y + N)

and

sin & sin#/ = — sin @ sin (Y + N)
cos §” sin i = cos 0 sin € — . (5
sin 0 cos € cos (Y + N)

The quantities i and A\’ are rigorously computed
from (4), and Q" from (5). Once again it may be
noted that (4) and (5) are mere generalizations of
well-known formulas for the elements of the mean
lunar equator to which formulas they reduce when
p=o=7r=0.

Fig. 1 The moon’s true equator.

The position angle C” of the moon’s true axis is
found from the generalized expressions for the posi-
tion angle of the mean axis. These latter are

sinC’ =sinicos(I' + A +C— §)secd
= —sinicos (& — Q") sec V',
in which i, A, §’ are the elements of the mean lunar
equator, while (, ") are the topocentric coordinates
of the exposure station referred to the mean lunar

equator and mean first radius. The obvious gen-
eralizations are

sin C” = —sin i cos (I” + A’ + ¢) sec & ©)
= —sin# cos (& — Q") sec b’ '

where (o, ') is the apparent place of the moon.

4. The Preparation of the Observation Equations

Our observation equations differ completely from
those of the Bessel-Wichmann scheme since they do
not involve the lunar limb. Instead, they are con-
cerned with the coordinate differences between the
fundamental point Mosting A and the other mea-
sured points, both in the selenodetic system and on
the photographs. The point Mésting A has been
chosen as the fundamental point merely because
good values are known for its coordinates in the
usual selenodetic system, but its use is not essential.
In our scheme, in its role as a fundamental position,
it is replaced by a number of points, all of which
have the same importance. These will be termed
primary points. The measures are assumed to pro-
vide refraction-free rectangular coordinates with the
y-axis oriented along the hour circle through the
center of the disk.

Now let (U, V, W) be the rectangular selenodetic
coordinates assigned to the crater Mosting A. These
values may be taken from Schrutka-Rechtenstamm
(1955) or Koziel (1963). The choice is not important
for the purposes of the solution. Let («, v, w) be the
coordinate displacements in the same system from
Mosting A to another primary point. Then (4, v, w)
are the selenodetic coordinates with Mdsting A as
origin, and these will be determined by the solution.
The unknowns of the solution are thus the moon’s
elements of rotation, 8 and vy, and the (u;, v;, w;) of
the primary points other than Mdsting A.

The coordinates of the primary points in the
usual selenodetic coordinate system are (E, F, G)
where

E=U+u
F=V +v,. (7
G=W+w

Let L be the known focal length of the telescope
and s’ the augmented lunar semidiameter. Let a, b,
..., k be the coefficients representing the librations
(I, ") computed in the usual way, i.e.,

a=cosb”sinl”, b=0,...,k =cos b”cos!l"”.

Then the instantaneous rectangular coordinates of
the primary points are (X, Y, Z) where

X a b, c E
(Y):(e,ﬂg)(F) (8)
zZ ij k G

The refraction-free photographic coordinates with
the y’-axis along the projection of the moon’s true
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axis are (x’, y'), where

X' =LXsins/(1 — Z sin .s’)}

9
Y =LY sins’/(1 — Zsins’) ®

The photographic coordinates with the same origin
but with the y”-axis along the hour circle through the
center of face are (x”, y’*), where

X' =x"cos C” — y sin C } (10)

Yy’ =y cos C” + x’ sin C”

Lastly, the photographic coordinates with the origin
at the image of Mosting A and the y-axis parallel to
the hour circle through the center of face are (x, y),
where

= x:I xmﬂ}’ (11)
Y=Y —"Ym

in which x,,” and y,” are the values of x” and y”
computed for Mosting A.

The values of x and y, computed as above with
assumed values for 8 and y and assumed values
(u, v, w) for the primary points, are the theoretical
values and will be indicated hereafter by (x., y.). The
observed values, which are derived directly from the
plate measures by subtracting the values for Mosting
A from the others, will be indicated by x, and y,. The
two sets disagree generally because of errors in the
assumed values and measures.

5. The Observation Equations

The observation equations merely state that the
increments to 8 and y and to u, v, and w of each pri-
mary point must be such as to cancel the differences
between the theoretical and observed values of x and
y. Hence, they are

ox 0x ox ox 0x
= X, — X
. (12)

Dop+ Do 4 Doy D, O
BBSB + ayay + auau + aV8v + awﬁw
=Yoo~ Y

There is one such pair of equations for each mea-
sured point on each plate, not counting Mdsting A.

The calculation of the partial derivatives in (12)
in analytical form is a rather slippery matter, as a
glance through the parallel sections in Hayn (1904)
reveals. Furthermore, the complication of evaluating
the validity of the necessary approximations arises.
Fortunately, the characteristics of the high-speed

computer make these formal differentiations and
subsequent approximations quite unnecessary.

Let AB = Ay = 0.0001 and Au = Av =
Aw = 0.001. Instead of computing the single point
(u, v, w) with the single pair (8, y), we program the
computations to compute (x, y) for six points.

Let
(X, yo) correspond to (B, v, u, v, w),

(X8, ¥8) r "B+ AB, Y, U, V, W),
(x'l: y‘)’) ” " (Ba Y + AY’ uv, W),
(JC,,, yu) ” g (ﬁa v, u+ Au, v, w),
(xv: yv) ” ” (Br Y U, v + AV, W),
Xws ye) 7 "By, v, w+ Aw).

The derivatives in numerical form are:

ox a_y

B (xs — x)/ AB, B = e — yo)/ AB
d 3

a—j = (xy — x)/ Ay, a_{', =y — y)/ Ay
ox _ a_y _ _

= (X0 — x)/ Aw, = 0w — ¥/ Aw.

The computation is quite direct and unsuited to desk
calculations, but since it involves mere repetition of
the same routines (1), (2), (3), ..., (11), it is well
adapted to the high-speed computer.

The characteristics of the reduction scheme
should now be apparent. Starting from initial guesses
for 8, y and u;, v;, w;, the values of I”, b”, C” are
computed for each photograph, then the values of
x. and y. for each point on each photograph, and
finally the values of the partial derivatives in the
observation equations. The normal equations are
formed and solved for the corrections 88, 8y, du,
ov;, dw,. The initial values are corrected and a fresh
iteration is commenced with the improved guesses.
Since 8 and y are closely known and since the u;,
Vi, w; can also be closely estimated, the computation
should require few iterations. The flow diagram of
Figure 2 illustrates the sequence of the computations.

6. The Formation of the Normal Equations

The measures are made in two orientations for
each plate, and clearly there are insufficient data to
assign different precisions to the measures on differ-
ent points. It follows that initially, at least, we must
assume a uniform variance for all measures on the
same plate. The situation is much the same for differ-
ences in precision between different plates. Whereas



THE MooN’s CONSTANTS OF ROTATION FROM PHOTOGRAPHS 35

Computation of Elements of Rotation

By u,v,w
Va4 g 4]
b4 b+ | |
RN
% 2l | [~
% % g vtAu||u u
7] L3 T v vidv||v
T T w wtdw
L Z r
b b, b’
G G ¢
Xp X,, Xe
Yo % Ye
Xo
Yo Observation Equations

]
INormuI Equations I

|terate

(86,85, 80, 8v,8w

Fig.2

it may appear to the observer that one plate is better
than another, experience shows that the real pre-
cision of the measures is by no means correlated
with the resolution. There is, however, the possibility
of assessing the weight of a star-trailed plate from
the residuals of the measures on the trail itself, since
the fluctuations of the trail certainly give the order
of the seeing displacements. Let us assume for now
that weights p;, p., ..., pm are assigned to the m
plates. These are computed from

pi=aot/a? (13)

where o2 is the variance of the trail on one plate
taken as standard, and o2 is the variance of the trail
on the plate i.

The reduction of the measures on one plate to
the image of Msting A as origin introduces algebraic
correlation that cannot be ignored in the formation
of the normal equations. Since

x=x"—x,",
! I
y=y'—y.",

then if o2 is the variance for plate /, the variance of

each x and y is 202 The covariance between two
x values, or between two y values, is o2

Assuming now that the x and y errors are statisti-
cally independent and that the observation equations
are stated in the sequence

X1, Y1, X2, Y2, X3, Y3, - -

then the covariance matrix C; between the measures
on plate { is
Ci=a?Q: (14)
where
95 =2,
g;x = 1 when (j + k) is even . (15)
gjx = 0 when (j + k) is odd

The complete covariance matrix for all plates, as-
suming independence between plates, is

C:diag(C,, C;},...,Cm) } (16)
= dlag (0'1201, 0'2202; ey O-mzom)
Normalizing this with o2, the variance of an observa-
tion of unit weight, we obtain the correlation matrix

— diag (©, @2 (ﬁ). 17
0 dlag(pl’pz""’pm (17)

The reciprocal of this is the generalized weight matrix
G, that is,

G= dlag (p,Ql_‘, sz:!_l, reey mem—I)- (18)

Hence, the computation of the generalized weight
matrix G reduces to the separate inversion of each
of the matrices Q;. These are quite large, their order
being 2n where n is the number of observed points
on the plate, not counting Mosting A. Fortunately,
the straight numerical inversion of the Q; is not nec-
essary. Their structure as defined in (15) is very
simple, and it is easily shown that their reciprocals
have the same structure. From this consideration,
it follows that if R; is the reciprocal of Q;, its elements
are given by

rij=n/(n+1)
re=—1/(n+ 1)if (j+ k)isevenp, (19)
rie=~0 if (j + k) is odd
where again n is the number of measured points not
counting Mdsting A.
The normal equations can now be formed. Let
D be the matrix of derivatives in the observation

equations (12), and let A be the column matrix of
unknowns

SB, 8)’, 8"], 8V1, Swl, 6“2, 8V2, 8W2, e
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Then the observation equations can be written in
matrix form as
DA =X (20)

where X is the column matrix of the differences on
the right-hand sides of (12). The normal equations,
taking correlation into account, are

(DTGD)A = DTGX, (21)

and the variance of an observation of unit weight is
estimated from

vTGo

O = =3k =’

(22)
in which & is the number of points whose coordinates
are determined, n is the number of points observed
on each plate not counting Mosting A, and v is the
column matrix of residuals. Assuming that 8 and y
are taken as the first unknowns, the diagonal ele-
ments of the inverse normal matrix

(DTGD)™?

provide the variances in units of o2 of 8, y, and then
of the coordinates u;, v;, w; in sequence.

7. Concluding Remarks

The method sketched above, which is being used
for the measures on Yerkes star-trailed plates, ap-
pears to represent the first attempt to break away
from the limitations of classical selenodesy, namely
the limitations of the heliometer and the Bessel-
Wichmann scheme, and the limitations of the com-
puting methods which appear to result from using
desk computers. It is true that Khabibullin (1958)
at Kazan used measures on photographs to deter-
mine the constants of the moon’s rotation, but he
used Mdsting A and the limb in the traditional way.

It is also true that Koziel (1963) used a large com-
puter for reducing four heliometer series, but again
the computations were differential and not specially
adapted to the high-speed computer.

The reductions take no account of free libra-
tions because of the relative shortness of the period
of photography. The amplitude and phase of the
free libration in longitude found by Koziel could be
used, but it is much too early to attempt this kind of
refinement in the reductions of material whose pre-
cision is yet unknown.
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