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ABSTRACT

Evidence is presented that strong systematic errors in the earthward coordinates of selenodetic points are introduced at
all stages of selenodetic triangulation, that is, in the fundamental point determination from heliometer measures, in the deter-
minations of the secondary points, and in the tertiary or photographic triangulations.

In contrast, the best photographic triangulations show virtually no evidence of system in the coordinates parallel to the

plane of the limb.

1. Introduction

Sevcral three-dimensional surveys of well-defined
points on the lunar surface have been made on
the basis of measures on photographs. Here we shall
be concerned principally with the Breslau triangula-
tion based on measures by Franz (1901) and reduced
by Schrutka-Rechtenstamm (1958), the AMS tri-
angulation (Breece, Hardy, and Marchant 1964),
and the ACIC triangulation (Meyer and Ruffin
1965).

All such triangulations depend on a knowledge
of the moon’s constants of rotation and on a limited
number of basic selenodetic positions. The former
are used to compute the orientation of the moon at
the instant of exposure; the latter are required to
connect the arbitrary coordinate system of the mea-
sures to the projections of the lunar axes in the plane
of the image.

The evolution of the subject and the technical
limitations of the last century imposed a hierarchy
of basic points. The heliometer method, devised by
Bessel for the determination of the constants of rota-
tion, involves determining the selenodetic coordi-
nates of one selected point. This point is connected
to a point of the bright limb, in distance and direc-
tion, in each heliometer observation. Bessel selected
the crater Mosting A for the fundamental point, and
it has retained this role cver since in selenodetic
work.

Since a single point is insufficient to control
either the orientation or the scale of a lunar photo-

graph, Franz (1899) in the period 1890-1894 made
a series of heliometer measures at Konigsberg con-
necting eight more points to Mosting A. The correct
reductions of these measures give the coordinate
steps in the selenodetic coordinate system from
Masting A to these secondary points.

All existing selenodetic coordinates still depend
on a position for Mosting A determined from one or
another of the heliometer series, and on the Konigs-
berg secondary measures. Whereas several heli-
ometer series are available for the fundamental posi-
tion, the secondary work of Franz was never
repeated, except that Hayn (1904) determined four
other secondary positions from micrometric meas-
ures at Leipzig. For various reasons these have not
been much used as controls for the photographic
triangulations.

2. The Fundamental Point

The various heliometer series lead to positions
for Mosting A that agree quite well in longitude and
latitude, but not quite so consistently in its distance
from the so-called center of figure. Variations in this
position, in so far as it relates to sclenodetic triangu-
lation, are merely equivalent to changes in origin of
the coordinates, and are therefore not particularly
important. It is merely necessary to ensure that the
fundamental and secondary positions are consistent
with each other. Thus for the purposes of selenodetic
triangulation, any one of the determined positions of
Maésting A can be used, but the secondary positions
must be consistent with it.
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A much different matter exists when we consider
the relationship between the selenodetic origin and
the lunar limb, or between the origin and the moon’s
center of mass. It is then important to use the most
reliable determination of the position of the funda-
mental point. In recent years Koziel (1963) has com-
bined four heliometer series into one long series to
obtain a position that must be considerably superior
to previous determinations based on one series each.
Koziel combined the Strassbourg series (1877-
1879), the Dorpat series (1884—1885), the first half
of the Bamberg series (1890-1912), all observed by
Hartwig, and the Kazan series (1910-1915) of Bana-
chiewicz, thus, in effect, obtaining a series extending
from 1877 to 1915. The position obtained for Mos-
ting A is

A =—5°9'50" = 4.5,
B =—3°1047" = 4.4”,
Ah =+ 0.40” = 0.19”;

this represents the most precise result obtained so
far with the methods and data of classical selenodesy.
However, we shall see later that there are reasons to
doubt the validity of the last coordinate, which is
equivalent to an altitude of 0.7 km above the mean
spherical datum,

The above position is not used in contemporary
work. The secondary measures of Franz and Hayn
were reduced by Schrutka-Rechtenstamm (1955),
who derived his elements of rotation and position
of Mdsting A by reworking several heliometer series.
The important difference is in the altitude of Mos-
ting A, which Schrutka-Rechtenstamm makes + 1.4
km above the mean sphere, that is, twice Koziel’s
value. The changeover to Koziel’s system is not
laborious, and should be made by applying constant
shifts in all three rectangular selenodetic coordinates
of such magnitudes that Mdsting A is moved into the
position obtained by Koziel.

The standard error for the altitude, viz. 0.19”,
is probably quite misleading, as is usually the case
in complex observation-reduction schemes in which
not all the sources of systematic error are identified
and compensated.

3. The Ranger Radii

The close-in tracking data for Rangers VI, VII,
VIII and IX* permit the calculation of the distances
of the impact points from the moon’s center of mass.

*Private communication, D. Trask, Jet Propulsion
Laboratory, Pasadena, California.

In principle, the calculation is quite simple, requir-
ing only a direct application of the universal law of
gravitation to the vehicles’ accelerations at impact.
Table 1 gives the distance from the impact point to
the center of mass in kilometers; the orthographic
map coordinates of the impact points are indicated
by £ and 7; and X is the selenocentric arc from the
center of face.

TABLE 1
THE RANGER Rapn

RANGER DISTANCE (km) ¢ 7 K
VI 1735.3 +0.362  40.166 2325
vII 1735.5 —0.349 —0.187 23.3
VHI 1735.2 +0.417  40.048 24.8
IX 1735.7 —0.040 -—-0.220 12.9

The dispersion in the distances is surprisingly
small, the total spread being only 0.5 km. The mean
value, 1735.4 km, is appreciably less than the mean
radius, 1738.0 km, of the limb. Even if we allow 1.5
km for the mean difference of elevation between con-
tinental surfaces (the limb is almost entirely con-
tinental) and the mare surfaces in which the vehicles
impacted, there is still a discrepancy of 1.1 km. Either
the moon’s figure is flattened at the center of face,
or the center of mass is 1.1 km nearer to us than the
center of figure. At present there is no way of choos-
ing between these alternate hypotheses.

The Ranger radii throw doubts on the accuracy
of the selenodetic altitude for the fundamental point
Mosting A, whichever hypothesis is adopted. This
point cannot lie much more than 0.5 km above the
level of the nearby maria — 1.0 km at the most.
Thus, if we adopt the idea that the center of mass
is nearer than the center of figure by 1.1 km, the
distance of M&sting A from the center of mass should
not be greater than 1736.4 km, and from the center
of figure not more than 1737.5 km. This is 1.2 km
below the value obtained by Koziel. On the alternate
hypothesis, with a flattening of the moon’s figure,
the distance of Mdsting A should not exceed 1735.4
+ 1.0 = 1736.4, which is 1.6 km lower than Koziel’s
value.

Thus, the Ranger radii are not compatible with
the most refined and precise basic selenodetic results.
This conflict must be resolved by a critical examina-
tion of both sets of data. The Ranger calculations
are very direct, whereas the methods of classical
selenodesy are well known to be complicated and
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indirect, involving the orbital theory, the dynamical
theory of the moon’s rotation, and a difficult appli-
cation of the calculus of observations. Some minor
problems in the rotation theory have not yet been
resolved. More important, the heliometer is a com-
plex instrument that is extremely vulnerable to sys-
tematic errors, It may be that undetected systematic
errors in all the heliometer work are the source of
the problem in the height of Mosting A.

4. The Secondary Points

Measures for eight secondary positions were
made by Franz (1899) in the period 1890-1894
using the Konigsberg heliometer. Each point was
observed on 12 evenings. The measures have been
rigorously reduced by Schrutka-Rechtenstamm
(1956). Micrometric measures for four other sec-
ondary points were made by Hayn (1904) at Leip-
zig. The rigorous reductions using modern rotation
elements were also the work of Schrutka-Rechten-
stamm (1956). These two sets of points are not con-
sistent with each other in their absolute altitudes and
earthward selenodetic coordinates.

Table 2 shows the heights in kilometers of the
Konigsberg points obtained by various authorities.
The heights obtained by Schrutka-Rechtenstamm
from the Konigsburg measures, without and with
allowance for phase, are denoted by h; and h,". The

TABLE 2
ABSOLUTE ALTITUDES OF THE KONIGSBERG POINTS

POINT I, ke hy he
Proclus + 1.6 +0.3 +0.4 —0.05
Macrobius A — 1.5 —0.5 +40.1
Sharp A —10.2 —8.8 —3.0
Aristarchus — 54 —8.2 —5.6
Gassendi — 53 —35.3 —0.1
Byrgius A 0.0 +2.8 +2.0
Nicolai A — 13 —0.8 —1.7 +0.02
Janssen K — 3.0 —2.1 —3.2 Sy}

Mean = — 3.14 —2.83 —1.39

heights obtained by Schrutka-Rechtenstamm (1958)
from the Breslau photographic measures are denoted
by /p. Finally, the heights from the ACIC triangula-
tion are indicated by A¢. It is known that the Breslau
altitudes are appreciably more precise than the heli-
ometer values, and since

2(’11 = h;;)?‘ == 871,
E(hl’ e hy)z ] 725,

there would appear to be grounds to prefer i," to hy;
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but the further work of Schrutka-Rechtenstamm is,
in fact, based on the coordinates computed without
allowance for phase effect.

Table 2 also gives the means of Ay, &/, and hy
for the eight points. Without phase, the mean alti-
tude of the eight points is 3.14 km below the mean
sphere; with phase, 2.83 km below. The application
of the Breslau photographic measures reduces this
negative mean altitude to 1.4 km. There is clear
evidence here that the original heliometer measures
are subject to some systematic error that causes the
altitudes h, to be too low. The same impression
results from a comparison with the Hayn secondary
points as reduced by Schrutka-Rechtenstamm, which
are given in Table 3. The central peak of Tycho,
which is quite unsuited for measurement, is omitted.

TABLE 3
THE HAYN POINTS

POINT HEIGHT (km)
Messier A —1.5
Kepler A +0.3
Egede A —0.8

Mean — —0.67

The three Hayn points lie in the maria, whereas
six of the eight Konigsberg points are continental.
Hence, the average height of the Hayn points should
be less than that of the Konigsberg points. In fact,
the situation is reversed, and the Hayn points are,
on the average, 2.1 to 2.4 km higher than the Konigs-
berg points and 0.7 higher than the Breslau versions
of these. Despite the smallness of the samples, it
seems safe to assert that there is a systematic differ-
ence in height between the Konigsberg points and
the Hayn points.

Clearly, then, the secondary points are not en-
tirely consistent, and the secondary data are not
entirely satisfactory as a basis for the photographic
triangulations.

5. The Breslau Triangulation

The Breslau triangulation has some importance
in contemporary selenodesy. The measures were
made by Franz (1901) at Breslau on five Lick plates,
and the reductions were made by Schrutka-Rechten-
stamm (1958) using his own values of the rotation
constants. The triangulation gives curvilinear coordi-
nates, heights, and rectangular selenodetic coordi-
nates of 149 points. The reductions were controlled
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by the Konigsberg points and a single Hayn point
that happened to be included by Franz in the Breslau
measures. The standard errors listed by Schrutka-
Rechtenstamm, which are probably underestimated,
show that the coordinates parallel to the plane of the
mean limb are known to about 0.1 or 0.2 km. How-
ever, the earthward coordinates have random errors
of several kilometers.

The Breslau scheme owes its importance to the
thoroughness of the reductions and its convenience
as a basic net for the control of subsequent triangu-
lations from photographs. Nevertheless, its draw-
backs should be noted. It rests on an imperfect sec-
ondary scheme. Although the Breslau measures have
ironed out the extreme errors of the Knigsberg posi-
tions, they have not eliminated or even reduced the
overall scale, orientation, and datum errors of the
secondary net.

6. Modern Photographic Triangulations

Recent triangulations of the lunar surface from
measures on photographs have been made by Bald-
win (1963), the U.S. Army Map Service (Breece,
Hardy, and Marchant 1964) and the Aeronautical
Chart and Information Center of the U.S. Air Force
(Meyer and Ruffin 1965).

The Baldwin triangulation is not completely
explicit in terms of coordinates and will not be
treated here in detail. The AMS triangulation is of
256 points from measures on 15 photographs. The
ACIC initial triangulation of 196 points from mea-
sures on photographs taken on eight evenings is the
most precise to date. It is the first triangulation based
on sequential photography and long-exposure pho-
tography, both intended to reduce the seeing dis-
tortions. The increased precision of the photography
is reflected in the precision of the results.

7. Some Theoretical Systematic Errors

Systematic errors in the selenodetic coordinates
determined from photographs may originate in many
ways. Errors in the control points, random errors in
the measures of the controls, errors in the computed
librations, systematic errors in the readings of the
measuring machine, phase effects, and photographic
effects: each of these can produce errors that are
functions of position on the disk.

The first three — errors of the controls, random
errors of the measures of the controls, and errors of
the librations — produce the same type of systematic
error. Assume that all points are measured on all

photographs, and further, make the simplification of
treating the photographs as orthographic pictures.
Then the instantaneous coordinates in the plane of
the limb are connected to the rectangular selenodetic
coordinates by

X —aFE + bF + cG}
Y=e¢E+fF+gG
in which the coefficients a, b, ..., g represent the
librations and are subject to the conditions
a+b4+2=1,
e+f+g=1,
ae + bf + cg=0.

(1)

The instantaneous coordinates (X, Y) are connected
to the refraction-free photographic coordinates (x,
) by

X =px— +h

D qy }, (2)
Y=py+agx+k

in which the coefficients p, g, h, k represent the rela-
tions between the arbitrary measuring axes and the
projected axes of the selenodetic system.

The reductions are now traced to see how the
errors influence the final resuits. First, for a single
plate, equation (2), applied to the controls, provides
two observation equations for each control point.
Forming the normals, the constants p, g, h, and k are
found.

With these known for each plate, X and Y can
be computed for each point on each plate. Turning
now to one point and inserting the values from each
plate in (1), we have the observation equations

&k + bF + ¢G = X,
e,-E + fiF + g.G = Y‘,

each plate yielding one such pair. Forming and solv-
ing the normals, the values of E, F, and G are found

from

E SaX + SeY

F |=NY 3bX + 3fY |, (3)
G ScX + 3gY

in which the inverse normal matrix N~! has elements
that are functions of the libration coefficients a;, b;,

. ., &. If there are errors in the instantaneous coor-
dinates X, Y, the corresponding errors in the seleno-
detic coordinates are 8E, 8F, 8G, where

SE SaidX; + 3ebY;
8F> =N 3hdX; + 3f8Y, > (4)
6G EciSX‘ + Eg,SY,

Thus 8E, 8F, 8G are linear functions of the errors
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86X, 8Y; for the same point on all plates. Further,
from the relations

6X; = xi6p; — v:ibq; + oh;,
SY,' = yiﬁp,- + xi'aq:' + aki)

it follows that 8E, 8F, and 8G are first-degree func-
tions of the measures (x;, y;) for the point on all
plates. But from the inverse of (2) and then (1), it
follows that 8E, 8F, 8G can be written in the form

OF = ajy + anE + aoF + aiG
oF = dsg + a;“E + aggF + CIQ;]G s (5)
6G = ayo + ank + apF + ayG

in which the coefficients a;;. are independent of E, F,
and G. Thus, whether the errors in E, F, and G arise
from errors in the controls or from the measures of
these, they are still represented by (5) and are first-
degree functions of the selenodetic coordinates.

Errors in the librations lead to errors in p, q, h,
and k also, but in addition lead to errors in the matrix
N1 In this case we have the additional errors

oF -\;ﬂgXi + Engi
8F |=| 8N"1) - | 2bX, + =fiY; ),
BG EC[Xj + EgiYi

where 6N ! is the error in N™'. This matrix is again
independent of the selenodetic coordinates, and the
sums of the two sets of errors in E, F, and G are
again represented by (5).

There is little doubt that phase effects produce
appreciable systematic errors. The existence of these
was noted by Schrutka-Rechtenstamm in his reduc-
tions of the Franz and Hayn secondary points. How-
ever, 1 know of no simple way of treating these. Fig-
ure 1 shows a bright crater with a thin strip of
shadow in the interior.
This may be body
shadow rather than
cast shadow; hence
with degradation of

PHASE ERROR

| “ o
™ the image, it is easy for
! i the observer to place
' ! his mark in the center

| A .
- ! of the bright area
Image ; rather than the center

of the crater. Obvi-
ously the chance of an

Fig. 1 error of this kind is in-
creased if the picture lacks resolution and the ob-
server lacks alertness and experience. The phase
effect displaces the crater toward the terminator.
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Photographic effects resemble phase effects when
measures are made on the original negatives, in
which case the dark areas within the crater and
around the crater rim are intruded on and diminished
by the bright areas. The net result is a displacement
of the crater image toward the terminator as indi-
cated in Figure 2. However, this is countered to some
extent by irradiation in the eye of the measurer.

Errors Due to Photographic Effects

| True Cente
I rue en r\

N
e A

False
Center

Fig. 2

The effects of these errors on the coordinates
depend on the statistical relations between the libra-
tions and phase. The results of phase and photo-
graphic effects will not be discussed further here,
but they should certainly be kept in mind because,
as will emerge below, the selenodetic coordinates
are affected by systematic errors that do not come
from the sources treated analytically above, namely,
the controls and their measures or the librations.

8. The Height Regressions

The most conspicuous common feature of the
Breslau, AMS, and ACIC triangulations is the trend
toward large positive heights at the center of face
and either zero heights or negative heights near the
limb.

It would be possible to analyze the height as a
statistical function of position on the disk, but in
order to deal successfully with the large dispersion,
it is best to reduce the number of parameters to a
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minimum. Therefore, we follow Baldwin and con-
sider the height as a function of one variable only,
namely the distance from the center of face. Let K
be the selenocentric arc measured from the center
of face. Then we can choose one or another of K,
sin K, cos K, or even some other function of K as
our argument. Obviously, the preferred argument
is the one that gives a straight line regression for
the height.

Returning to (5), since
0h =~ ESE + F6F + G&G,

the expression for the systematic error in & takes the
form
6h =  bE + byF + bG
+ b11E2 + b22F2 + baan } (6)
+b12EF + b3EG + bogFG

This represents the systematic height error due to
errors in the controls and the librations. It contains
nine coefficients, far too many in view of the large
dispersion in the heights. Hence, we average out the
trends along the various directions from the center
of face as follows: First we introduce the approxi-
mate substitutions,

E =sinKcos P,

F —sin K sin P,

G =cos K,
where P is a position angle about the center of face.
Introducing these in (6) and replacing the functions
of P by their average values, we are left with

8h=a+ bcosK + ccos? K
=a+ bG + cG? ’

We can also take the effects of lunar figure into
account in the same way. If the figure is ellipsoidal,

then averaging out the characteristics of the great
circles through the center of face, we have

h =B cos? K = B8G=2 (8)

(7

Thus, whether the height comes from an ellipsoidal
figure, from errors in the controls or their measures,
from errors of the librations, or from all of these, we
would expect a regression represented by (7), i. e.,

h=a+ bG + cG>. 9)

The data for the three triangulations can indeed be
fitted by (9), but the coefficients indicate that they
can be fitted in a simpler way by

h=A—Bsink (10)

for all three triangulations. This result is quite unex-
pected and to some extent unwelcome, since there
are serious difficulties in the interpretation of (10).

The least squares analysis is limited to conti-
nental points, since there are reasons to believe that
the maria are depressions and not typical of the
moon’s figure. The results for the three triangulations
are given in Table 4. The heights are in kilometers.

TABLE 4
THE HEIGHT REGRESSIONS
BRESLAU AMS ACIC
POINTS 46 130 19
o +1.25km *+1.78 km +0.82 km
A +3.82x0.48 +5.000.55 4227054
B +6.0120.12  44.95%071 270+0.82

Whatever the nature of the regressions, it is clear
from the values for the standard deviation o from
the regression line (corrected for 2 degrees of free-
dom) that the ACIC triangulation has the smallest
random errors and the AMS the largest. The value
of 0.82 for the ACIC triangulation is surprisingly
small, for this figure includes the effects of topogra-
phy and the variations in the characteristics of the
different radials. Even though the use of (10) does
not imply that the lunar figure is one of revolution
about the moon’s first radius, the regressjons show
that it cannot differ much from such a figure. The
regressions for the Breslau, AMS, and ACIC tri-
angulations are shown in Figures 3, 4, and 5.

9. The Interpretation of the Regressions

The regressions represent either the moon’s fig-
ure or systematic height errors, or a combination
of the two. If the moon is strictly spherical, then
(10) represents only the systematic height error.

It is easily shown that (10) cannot represent only
the figure. The lunar limb is entirely continental
except for the short arcs occupied by the limb maria.
Its mean radius is 1738.0 km; hence, we would
expect the mean altitude of continental points near
the limb to be slightly greater than 1738.0 km —
slightly greater because the limb maria can be ex-
pected to lower the mean radius by a small fraction
of a kilometer. Thus if (10) represents real heights
and nothing else, then the regression should con-
verge on a small positive value as K goes to 90°.
That is, we should have

A-B=c¢ (11)



+3

Absolute Altitudes of Breslau Points (Continental)

Absolute Altitudes of ACIC Points

—km

® Mare Points
O Continental Points

Fig. 3

Fig. 5

Absolute Altitudes of AMS

Points (Continental)

— km

Fig. 4



26 D. W. G. ARTHUR

where € is positive and small, say less than 0.2 km.
However, the values of € for the Breslau, AMS, and
ACIC triangulations are —2.19, +0.05 and —0.43
km respectively. The Breslau triangulation fails to
meet the criterion, and there is some doubt about the
ACIC triangulation.

Since the regression for the Breslau net repre-
sents systematic error at least in part, either the
figure terms are linear in sin K, or the nonlinear
terms in the systematic error and the figure balance
out exactly. The latter is so improbable that it must
be rejected. The other alternative, that the figure
terms are linear in sin K, is also hardly credible,
since A — B sin K is equivalent to a rather strange
figure with a conical boss at the center of face. It is
much easier to believe that (10) represents sys-
tematic height error and nothing else.

If we accept this, then the conclusion also applies
to the other two triangulations, for the regressions
are of exactly the same type. Thus the form of (10)
brings forth the discouraging conclusion that none
of the three triangulations give firm evidence of devi-
ation from the spherical form and that one of them
has systematic height errors ranging up to +5 km.

There are even more puzzling features in the
form of (10). There is no evidence of terms in cos K
and cos? K, and hence, no indication of systematic
errors from sources that we know are present.

The validity of (10) must therefore be carefully
examined because it leads to a rather puzzling situa-
tion. To confirm the linearity in sin K, the same data
were fitted to the expression

h=A’"—B’'sinK + C’'sin? K. (12)

If this is a better representation of the data, the dis-
persion about the regression line should be smaller.
The results for the three triangulations are shown in
Table 5. It will be noted that the standard deviations

TABLE 5
NONLINEAR HEIGHT REGRESSIONS
BRESLAU AMS ACIC
PoOINTS 46 130 19

o +1.25km +1.78 km +0.84 km
A’ 4.42 5.74 295
B’ 8.78 7.84 5.50
c 2.48 2.36 2.38

about the regression line are exactly the same. From
the viewpoint of dispersion, the linear and quadratic
regressions have equal validity. However, the values

of A and B are made larger and, in my view, much
less probable. I would reject the quadratic expression
completely but for one surprising feature, namely, the
close agreement between all three triangulations in
the value of the second-degree coefficient C’. The
value of C’ is +2.4 with a spread of 0.12 km. Since
the standard error of C’ in each triangulation is larger
than 10, this agreement is remarkable. If not fortui-
tous, it implies a spheroidal flattening at the center
of face of 2.4 km, which however is overlaid and
completely concealed by the non-spheroidal elonga-
tion represented by A and B. Certainly, any curva-
ture concealed in (10) is not consistent with an
earthward spheroidal elongation of the figure.

The quadratic regression (11) can also be tested
with the limb criterion. This is now

A" — B + C' =g,

where again € should be small and positive. The
Breslau, AMS, and ACIC triangulations give € =
—1.88, +0.26, and —0.17 km respectively, and once
again the Breslau triangulation fails.

At this stage I am reluctant to reject the regres-
sion (12) completely, but the Baldwin triangulation
gives a regression for the continental points in which
C’ is about —6.0. If we accept these data, the con-
clusion must be that the agreement is fortuitous and
that C” has no significance for the figure.

In the Baldwin triangulation, the continental
and mare points give regressions of the type

h=A"—B'sinK+ C'sinK

in which C’ approximates to —6.0 in the continental
regression and +6.0 in the mare regression. The
average of the two regressions is therefore repre-
sented by (10). However, since the mare regression
rises above the continental regression at the center
of face, there is something rather strange in the
results. Evidently, the regressions are not valid repre-
sentations of the heights close to the center of face.
This triangulation, like the others, tends to negative
heights near the limb. Clearly there are appreciable
systematic errors in Baldwin’s results. His continental
and mare regressions are shown in Figure 6.

10. Systematic Scale Differences

Even for contemporary triangulations, scale is
still imposed by the Konigsberg measures of 1890-
1896. Unfortunately, these measures were published
in a much reduced form, and there are no details con-
cerning the conversion to arc or the removal of
refraction. By 1890 however, the Konigsberg heli-
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Absolute Altitude Trends
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ometer was an instrument with well-known charac-
teristics and had been repeatedly calibrated. There is
no reason to believe that sensible systematic scale
errors were introduced in the measures of the
Konigsberg points.

Despite this, the notes of Franz (1899) indicate
a curious discrepancy that appears to have been
passed over by Schrutka-Rechtenstamm. The scales
of the five Lick plates measured at Breslau were con-
trolled by the Konigsberg points. Franz also mea-
sured seven points on the profile of the bright limb
of each plate, so that he was able to derive a theo-
retical radius of the limb from the Konigsberg points,
and also what we might call an observed radius
from the seven points. Table 6, taken directly from

TABLE 6

THEORETICAL AND OBSERVED RADII
BRESLAU PLATES

PLATE OBSERVED — THEORETICAL

I +1755
11 +1.30
111 +0.73
v +1.06
\% —0.11

the results given by Franz, shows the excess of the
observed value over the theoretical value. The aver-
age excess is almost one second of arc. Franz attrib-
uted this to irradiation, but the anomalous value for
the last plate shows that lack of rigor in the Franz
reductions of the secondary points may have played
some role too.
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Certainly, in the reductions of the Yerkes plates,
using the Breslau points as controls, there is little
evidence of irradiation. The observed radii, derived
from at least 30 limb points, tend to exceed the the-
oretical radii, but the amounts are only one tenth of
those found by Franz. Our measures thus confirm
that the scale error of the Breslau net cannot exceed
0.0002, and may be much smaller.

The AMS and ACIC triangulations, which are
based on the Breslau triangulation, may be tested
against it for scale. Since I believe that the heights,
and thus the earthward coordinates G, are seriously
affected by systematic errors, the test is restricted
to scale parallel to the plane of the mean limb. Let

R =~/(E*+ F? (13)

where E and F are the rectangular selenodetic co-
ordinates in the plane of the limb, that is, the £ and
n of Schrutka-Rechtenstamm. Then, between two
triangulations we have

R’ =(1+ wR _ (14)
or AR =puR
The least squares value of the scale difference is
= SRAR/ZR?, (15)

and the variance of w is
o, = o?/3R. (16)

The standard error o of a single scale comparison
is found from
3 v 3(AR — pR)®

crh:n—l_ n—1

(17)

The above can first be applied to a comparison of
the Konigsberg and Breslau values, both as com-
puted by Schrutka-Rechtenstamm. The data are
given in Table 7. The table gives

p= +0.00019 == 0.00004.

The difference is selenodetically significant and per-

TABLE 7
SCALE DIFFERENCES, BRESLAU — KONIGSBERG

PoINT R AR
Proclus +0.75436 +0.00030
Macrobius A .69570 + .00022
Sharp A 86712 + .00026
Aristarchus 78548 -+ .00009
Gassendi 71054 — .00020
Byrgius A 91552 + .00049
Nicolai A 73633 — .00003
Janssen K .85740 .00000
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haps larger than anticipated, though this difference
could easily arise from rejections of some of the
points in the reductions of the plates.

The distribution of the common points between
the Breslau and ACIC triangulations, at different
values of R, permits an investigation of AR as a func-
tion of R. Apparently, for the difference ACIC —
Breslau, AR follows a third-degree curve, starting
from zero at R = 0, reaching a maximum negative
of —0.00007 at R — 0.28, then returning to zero at
R = 0.56, and finally climbing to +0.00009 at R =
1.0. The value of R found from points in the zone
0.3 < R < 0.6 is —0.00009 = 0.00004, and in the
zone 0.6 < R < 1.0 is +0.00009 = 0.00004. The
overall value is +0.00005. Thus, although the over-
all scale difference between ACIC and Breslau is
almost negligible, there is some evidence that the
values differ systematically in a nonlinear fashion.

The comparison between Breslau and AMS indi-
cates a relatively large scale difference. From the
difference R(AMS) — R(Breslau) for the 61 com-
mon points, we have

# = +0.00068 = 0.00005.

Indeed, AR is negative at one point only. The regres-
sion of AR on R is shown in Figure 7. In view of the

Scale Difference
In The Plane Of The Limb
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close agreement in scale among Breslau, AMS, and
the photographic measures at LPL, it is evident that
the AMS triangulation contains serious scale error
amounting to 1 km at the limb. Since the regressions
also show that this triangulation has an exceptionally
large non-ellipsoidal elongation, and high dispersion,

it is clear that there is some defect in the AMS work
that requires attention before this triangulation is
extended.

11. Systematic Differences of Level between
Continents and Maria

In the present imperfect state of selenodesy, the
relative levels of maria and continents have a tempo-
rary importance. Goudas (1966) recently asserted
that the selenodetic results do not support the tradi-
tional view that the maria are lower than the conti-
nents. However, this idea cannot have come from a
careful interpretation of the data. In the present
investigation, the mare points were not taken into the
least squares analysis of the regressions discussed
in Section 8, but were plotted. For all three triangu-
lations it was evident that the bulk of the mare points
fell below the continental regression lines, the aver-
age depression of the mare points being about 1.25
km below the regression lines. The interpretation of
the regressions is quite irrelevant in this context and
the result holds whether they represent real heights or
systematic errors. Figure 8 shows the relative levels of

Relative Levels of Maria and Continents

0 sin K—— [
C
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I.7km AMS
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Fig. 8
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continental surfaces (C) and mare surfaces (M) at
various values of sin K. Note the peculiar dip in the
AMS mare levels in the areas near the limb. The
difference is smaller than anticipated, but this may
be due to bias in the sample. The selenodetic points
tend to avoid deep maria such as Crisium.

That the maria are depressed below the con-
tinents is also easily seen from the limb profiles.
From the LPL measures of such profiles, it is clear
that the central regions of Smythii, Marginis, and
Humboldtianum lie 5, 2, and 4 km respectively
below the mean level of the limb. Weimer’s charts
(1952) indicate that the central area of Orientale
lies about 3 km below the mean level. The mean cen-
tral depression for the four limb maria is thus 3.5
km, that is, the average depression of their surfaces
is about 1.75 km. Combining the two sets of data, the
overall mean depression for mare surfaces is about
1.5 km. This figure should be used with some cau-
tion since the lunar maria are distinct individuals
with widely different depths.

12. Deformations of the Model

The expression
8h=A — BsinK,

regarded as a representation of the systematic errors,
is not explicit as to the manner in which these deform
the model of the moon. In conformity with the mode
of analysis used here, we use only two coordinates,
R and G. We then have

R8R + G6G = A — BR.

This has an infinite number of solutions for 8R and
8G. For the AMS and ACIC triangulations, errors
in R seem to be too small to generate appreciable
height errors, and it would appear that for these two
triangulations, the height regressions are due entirely
to systematic errors in G described by

8G = (A — BR)/G.

This indeed may be the case, but it must be remarked
that the differences between these two triangulations
do not support this conclusion. From Table 4, we
obtain for ACIC — Breslau

AG = — (1.55 — 3.31R)/G,

whereas when GAG is plotted against R, there is no
sign of a regression. This discrepancy may arise
from the fact that 30 of the 41 common points are
used as controls by ACIC. Moreover, there is a shift
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in the sampling. The regressions are based on all con-
tinental points in the two triangulations, but no dis-
tinction is made between mare and continent in the
common points used to evaluate GAG.

Despite this contradiction, it is clear that the
height difference Ah must come from differences in
G in the two triangulations, and indeed, the correla-
tion coefficient for Ak and GAG is greater than +0.9.

The above should make clear some of the diffi-
culties in using the regressions to explore the nature
of the systematic errors. With the dispersions present
in this case, the number of points is too small. The
latter difficulty is aggravated in the direct comparison
of two triangulations, and such a comparison be-
tween the AMS and ACIC results is hardly worth
while because of the paucity of common points.

The form 8h = A — B sin K for the height error
is rather puzzling, since it rules out as sources errors
of the controls or their measures, errors of the libra-
tions, and departure of the center of figure from the
origin of coordinates. Nor can the regression be
attributed to an ellipsoidal figure. For the present
[ must leave the solution of this problem and the con-
firmation of the validity of the linear form 4 — B sin
K to the arrival of more and better data. In addition,
it should be noted that the regressions of Saunder
(1905), Weimer (1954), and Baldwin (1963) are all
strongly curved. The regressions for all six triangula-
tions are shown in Figure 9.

13. Conclusions

The above should make clear that to date we
have achieved only partial success in one of the prin-
cipal objectives of selenodesy, namely, the determi-
nation of reasonably precise selenodetic coordinates.
The coordinates (E, F) parallel to the plane of the
mean limb appear to be reasonably well determined
in the fundamental, secondary, and photographic tri-
angulations. The earthward coordinate G is not well
determined. There is reason to believe that the best
heliometer value of G for Mdsting A is still not cor-
rect and that all heliometer values for this quantity
are too high.

The secondary triangulations of Franz and Hayn
show a number of unsatisfactory features, but there
is no long range problem here as work now ap-
proaching completion at LPL will provide a new
and more precise secondary net.

The photographic or tertiary selenodetic triangu-
lations again display large errors in G, though the
precision in E and F is quite satisfactory. In part this
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Comparison of Height Regressions
for Six Triangulations

+5 ka

Fig. 9

is due to the geometry of the situation, but this does
not explain the systematic errors encountered in all
photographic triangulations. Many further measures
of the type made by ACIC are required to resolve
this problem, since as the measures accumulate, the
random errors of the selenodetic positions diminish,
and the character of the systematic errors becomes
clearer.

Furthermore, even strong systematic position
errors are not in themselves objectionable, so long as
they are truly systematic, and the law of the system
eventually becomes available.

The precise coordination of the lunar surface
points still presents considerable problems. These
must be met by more and better measures, and by a
more rigorous and refined analysis of the results.
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