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ABSTRACT

Full details are given for the initial reductions of measures on star-trailed lunar photographs. These reductions deter-
mine refraction-free photographic coordinates of limb profile points and points on the disk. These coordinates are referred
to axes with the origin at the center of the bright limb with the y-axis directed along the moon’s hour circle.

1. Introduction

he long focus refractor is the logical successor

to the heliometer for the further development of
primary selenodetic research. This paper details the
LPL methods for obtaining star-trailed lunar photo-
graphs and for making measurements and the initial
reductions. These last provide refraction-free photo-
graphic coordinates of points on the disk and limb
profile in a system oriented on the moon’s hour
circle.

2. The Star-Trailed Lunar Photographs

During the lunar photographic program at the
Yerkes Observatory in the period 1959-1962, star-
trailed lunar photographs were attempted on each
evening when the moon was more than half full.
About 200 star-trailed plates were obtained, but
not all of these are expected to be useful. Some are
useless because of poor seeing, and on others the
trail is too short, being confined to the illuminated
portion of the disk. The latter failure comes from
using a star that is too faint to register on the unex-
posed plate (sky or shadow portions), although pre-
exposure by the moon’s surface sometimes gives a
visible trail within the illuminated disk. In the latter
case the trail is long enough only when the moon’s
image is wide in the east-west direction, i.e. near full.

The photographic technique is quite direct but
requires both care and quickness on the part of the
observer. The finder is first carefully collimated with
the telescope, and a decision is made as to which star
will be registered as a trail. This star must not be
too near the moon or the plate will be fogged during
the trail exposure. The lunar exposure is obtained
in the normal way and the drive switched off. The
plateholder is left open as use of the dark slide is
liable to disturb either the holder itself or the plate.
In this period lighting in the dome must be kept to a
minimum. The telescope is moved a few degrees in
declination to intercept the transit of the star. The
start and finish of this transit are monitored through
the finder. At the end of the transit the dark slide is
closed and the plate processed in the usual way.

Using Kodak Contrast Process Ortho plates with
the Yerkes 40-in. refractor, we were able to use
stars down to the fifth magnitude, although the
fainter stars sometimes gave trails only within the
bright part of the disk, as already noted.

3. The Measures

The coordinate measures on the star-trailed
plates are made with LPL’s Mann 422-C compara-
tor. Some details of this instrument are given in
Comm. LPL No. 61. These measures relate to the
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trail, to a group of 45 well-defined craters and spots,
and to a number of points on the bright limb.

Each plate is measured in two orientations dif-
fering approximately by 180°. In each orientation
the trail is nearly parallel to the x-axis of the instru-
ment. The measures in the two orientations are
united by measures on two fiducial marks. The
measures in the second orientation are transformed
to the corresponding values in the first orientation by

X1 =X2€08 0 — y, sin0+h}_ o
yy=1yacos 8+ x»sin @+ k

The coefficients 0, h, and k are found as follows: Let
(x1, 1) and (x2, y.) be the readings on the first fidu-
cial mark, and let (x,’, ;") and (x.’, y»") be the read-
ings on the second. If we write

Ax, =x, — xy,

Ay, =y, —y,
Axy = x2 — x,
Ay: =y, — y,

then (1) yields

Ax; = Ax, cos 8 — Ay, sin 6,
Ay, = Ays cos 0 + Ax. sin 6.

Solving for cos 6 and sin 8, as if these were inde-

pendents, we get

Ax,Ax. + Ay Ay
Ax,? + Ay.?

Ax,Ay, — Ax Ay, .
AX22 + Ay22

Computed in this way sin 6 and cos 6 are not gen-
erally consistent, even though the dispersion in the
readings on the fiducial marks does not exceed a few
microns. Hence, we compute consistent values as
follows:

cos 0 =

k4

sin @ =

Put D= Axlez + AylAyg,

and N = AXgAyl - AxlAy-_».

Then
sin @ = N/\/(N? + D?), 2)
cos @ = D/\/(N? + D?). 3)

The constants 4 and & are found by applying (1) to
both fiducial marks and then averaging, i.e.,

2h = (x; + x1") — (x2 + x2’) cos 0 + (¥ + y2") sin 6,
4)

2k = (y1 + ¥1) — (32 + y2’) cos 0 — (x2 + x2’) sin 6.
5)

Note that sin @ and cos 6 follow N and D in sign.

The above formulas are valid for all values of the
rotation 6.

The selenodetic points and the trail are measured
in both orientations, but the points on the bright limb
are observed in the first orientation only. For the
selenodetic points, we give the means (x, y) of the
first and second orientations and also the semidiffer-
ences (&x, 8y). The latter permit the user to assess
the reliability of the point.

The star trails are observed at 5-mm intervals,
but in general, different points on the trail are ob-
served in the first and second orientations. Hence, it
is not possible to determine the precision of the trail
measures; in any case, such determinations would be
meaningless because of the random deflections due
to the seeing. However, an indication of the precision
of the direction of the trail is required, and this is
discussed below.

4. The Initial Reduction of the Limb Measures

In general, the trail is a short arc of a hyperbola,
and the direction of the tangent to this varies from
one end to the other. Since our computations for
the moon refer to the center of the disk, the
appropriate choice of the tangent, as the east-west
direction in the sky, is clearly the tangent at the
intersection of the trail and the moon’s hour circle.
In practice this is the foot of the perpendicular from
the center of the disk to the trail as in Figure 1. Thus,
before we can process the measures on the trail itself,

center of
bright limb

Fig. 1
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the approximate coordinates of the center of face
must be determined from the measures on the bright
limb.

The limb is represented by the circle

(x—h)?+(y—k?P=r. (6)
Expanding this and introducing

g:rz—lrz—k21
z:x2+y2 ‘f’ (7)

we obtain the linear observation equation
g+ 2hx +2ky =1z (8)

for each measured point on the limb. The normals
are formed, giving each observation (8) the same
weight, and solved for the unknowns g, h, and k.
Note that the method of least squares is not cor-
rectly applied here, since we minimize the wrong
quantity. However, since we arc also working with
measures affected by refraction, rigor would be
wasted at this stage. The approximate values (h, k)
are precise enough to determine the center of face
for present purposes. The approximate radius of the
limb is found from

r=+\/g+ -+ k. 9)

5. The Initial Reduction of the
Star-Trail Measures

To a first approximation, the trail is treated as
the straight line

vy =a, + bix.
The value of b, is found from the normals as

B — mzxy — Zx3y
1= s — (3x)2°

(10)

where m is the number of measured points on the
trail. From b, we determine the rotation ¢; which,
when applied to the measures, refers these to axes
oriented on the trail itself, i.e.,

sin 0, = b,/\/(1 + b))
cos By = 1//(1 + b)) [

The coordinates of the trail points are transformed
by

(11)

x; = xcos 8, + ysin 8, — '\
. i (12)
y,=ycos 8, — xsin 6, — k ,f
where
h = hcos 0, + k sin 0, 1

k' = (cos 0,2y — sin G,Ex)/m)/' (13]

This transformation refers the trail points to axes
with origin at the intersection of the trail and the
hour circle through the center of face. The x,-axis
is directed approximately along the trail.

The star trail is really a hyperbola whose curva-
ture is appreciable when the moon is furthest from
the equator. However the trail is so short that we
can regard it as circular. Even so, the curvature
cannot be reliably estimated from the trail itself, and
instead we impose the value

LI t_ar_lﬁ, (14)
P f
where f is the approximate focal length of the tele-
scope and §* is the approximate declination of the
star. Hence, in terms of the transformed coordinates,
we write the equation of the trail as

vi = a» + baxy + caxy?, (15)
where
tan 6%
€2 = g (16)
Writing
21 =V — 0ok (17)

then the typical observation equation is
as + baxy = z4,
and the least squares solution for b. is

m3x,z; —

2x132
by = _

* _WE.[]Q_ (2.7(1)27. (18)

The computations determine b. three times, first
from the measures in Orientation I, then from the
measures in Orientation II as transformed to the
system of Orientation I, and lastly from both sets.
The first two estimates are used merely to assess
the precision of the determination. Only the third
value is used in subsequent computations. The quan-
tity b., which is small, represents the final rotation
from the general direction of the trail to the tangent
at the point specified above.

6. The Correction for Differential Refraction

The sum tan~!b, + tan~'b. represents the rota-
tion from the x-axis of the measures to the east-west
direction in the star-trail exposure; however, this
rotation cannot be taken directly into the lunar
exposure because the lunar exposure has a differen-
tial refraction which is generally different from that
of the trail exposure.

The star’s right ascension and declination
(a*, %) are computed manually, and the program
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then derives the hour angle H*, zenith distance Z*,
and parallactic angle Q*, using

H* = Greenwich sidereal time at 0" UT*
+ sidereal equivalent of UT*
— W longitude of observatory

— a*, (19)
cos Z* — sin ¢ sin 8* + cos ¢ cos 8* cos H*,
(20)

sin Q* = sin H* cos ¢ cosec Z*, (21

and
sin ¢ — sin 8* cos Z*
cos &* sin Z*

cos Q% = (22)
The corresponding quantities for the moon are de-
rived as in Comm. LPL No. 60, which also details
the computation of the refraction coefficients k and
«’. Let the values of these for the trail exposure be
k* and x*’. We also require the ratios

p= K/K (23)
for the moon and

p* = k*/k* (24)
for the star. Now, in Figure 2 let OW represent the
refraction-free direction of the east-west line in both

Z

Fig. 2

exposures, and let OZ and OZ* represent the direc-
tions of the zenith in the refraction-free lunar and
stellar exposures. Then

WOZ = 90° + Q = ¢, (25)
and
WOZ* = 90° + Q* = y*, (26)

The refraction compressions operate separately on
the two pictures along OZ and OZ*, thereby leaving
these directions undisturbed. Hence, ZOZ* pre-

serves its value which is y* — @y = O* — Q. Let the
refraction in the lunar image displace OW to OW”,
and let the refraction in the stellar exposure displace
OW to OW*. Let ¢ = W'OZ and y* = W*0OZ*.
Then these last are the values of Y and ¢* as affected
by refraction, that is,

tan / = ptan Y
tan Y*’ — p* tan l[/*}’ 27

Now let € be the counterclockwise rotation which
brings OW* to OW’, that is, the rotation from the
apparent east-west direction in the star-trail expo-
sure to the apparent east-west direction in the lunar
exposure. It can be seen from Figure 2 that

e+ Y+ (P* — ¢) = P*,
e=W¥—W)— (P —y). (28

or

7. The Reduction of the Coordinates to a
Refraction-Free Equatorial System

The final step for the selenodetic points is their
transformation to a refraction-free set with the origin
at the center of face and the x-axis perpendicular to
the moon’s hour circle.

It will be remembered that the x-axis of the
measures is first rotated through the angle tan~!b,
to make it approximately parallel to the trail, then
through the angle tan~'b, to align it precisely along
the appropriate tangent to the trail. Lastly, it is
rotated through the small angle € to bring it into
coincidence with the east-west direction in the lunar
photograph, as affected by refraction. This last direc-
tion makes an apparent angle y with the vertical in
the lunar exposure. Hence, the (x, y) system of
measures must be rotated counterclockwise through
the angle

& =tan"'b, + tan"'b, + € + ¢’ — 90° (29)

to bring the y-axis into the vertical. Thus for the
selenodetic and limb points, the refraction-free hori-
zontal and vertical coordinates are

u=x’(xcosf+ysin§)}

v =k (y cos £ — x sin &) (30)

Rotating back through the refraction-free angle Q,
the required refraction-free coordinates referred to
axes perpendicular to and along the hour circle are

x,;:uCOSQ—VSinQ}‘ (31)

ye=vcosQ + usin Q
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At this point it must be remembered that the center
of face was determined from measures affected by
refraction using a method of least squares that was
not strictly correct. The computations were precise
enough to determine the direction, but not positions,
with respect to the limb.

The approximate values & and k are treated
exactly like the coordinates of a selenodetic point
and reduced by (30) and (31). Let the resulting
values be (h,, k,). These are small quantities. In the
determination of the center of face we seek to mini-
mize the sum of the squares of the radial deviations
of the real limb from the circle (6). The deviation
of the measured point of the limb from the circle is

= \/[(-xff - hﬂ)g + ()’.’:‘ - kﬂ)z] -r,

where r is the value found in the first solution. We
write
R =/[(xg — h,)* + (v — k38,
so that
t=R—r.
The change in ¢ corresponding to the small changes
&h, 8k, and &r in h,, k,, and r, is

8t — 6R — or

il (AF ) ( Y — u)
— R - 6h — R

- 8k — or.

The increment &7 is required to cancel the existing
discrepancy ¢, that is, we require &/ + r = 0, from
which, approximating R in the denominators to r,
our observation cquation becomes

(xg — ho) — ko)
r r

81-1- -8k +86r=R —r.

(32)

The normals are solved for the corrections &h, 8k,
and &r, which are applied to &, k., and r. To ensure
exhaustion the solution is repeated.

Let (h), (k), and (r) be the final corrected values
of h,, k., and r. Then the last reduction is

x = xp — ()]
Y=Y — U\’)[l

In these x and y now represent the refraction-free
photographic coordinates of the selenodetic and limb
points with the origin at the center of the limb circle.
The y-axis is directed northwards along the hour
circle.

(33)

Acknowledgments. This research was supported
by the Air Force Cambridge Research Laboratories,
U.S. Air Force, under Contract AF19 (628)-4332.



