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ABSTRACT

Details are given of the LPL method for combining measures on different lunar photographs, using the librations, to com-
pute solid selenodetic coordinates. Published methods are critically examined, and the correct treatment of pseudo-observa-
tions is outlined. A first-order treatment of the error theory for selenodetic positions is derived from the LPL method of

combining plates.

1. Introduction

Selenodetic coordinates have been computed from
measures on lunar photographs by Franz (1899),
Saunder (1905), Baldwin (1963), Schrutka-Rechten-
stamm (1958), the U.S. Army Map Service (1964),
and the Aeronautical Chart and Information Center
of the U.S. Air Force (1965). With the exception of
Baldwin, each of these authors uses a different
method for converting the measures into selenodetic
coordinates; since Baldwin uses the same method as
Saunder, his computations do not require further dis-
cussion. Goudas (1965) has published a method of
computation in which the mathematics are in error.

All these authors start from the same base,
namely, plane coordinate measures on photographs
with different optical librations. This is the so-called
stereoscopic method, although the name is a misno-
mer, since stereoscopy is not generally used in the
method and certainly is not essential. The methods
used are often characterized by considerable indirect-
ness of approach. Since reliable selenodetic coordi-
nates can be obtained only with considerable over-
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determination in the measures, all investigators have,
in their reductions, used the method of least squares;
but, with a single exception, the method has not been
correctly applied. The resulting selenodetic coordi-
nates are not least squares values and their precision
is not correctly estimated. The method described
here is direct and rigorous in its use of least squares.
It cannot be very different in principle from that of
the Army Map Service (1960), but the exposition
given below is probably simpler.

The derivations of selenodetic coordinates from
measures on lunar photographs may be classified as
follows, when regarded from the viewpoint of least
squares:

I. Schemes in which the observation equa-

tions are stated in terms of the measured
quantities;
Schemes in which the observation equa-
tions are stated in terms of pseudo-
observations, namely, transforms of the
original measures.

The second class may be illustrated by Saunder’s
method. From each single photograph Saunder de-

II.
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rived the standard direction-cosines (£, n, {) of the
line-of-sight projection of the selenodetic point on
the mean lunar spherical datum. His pseudo-obser-
vations were:

d=£-¢,

dn=mn-m,
where £ and 7) are the values of £ and % meaned over
all plates. Saunder then treated 8¢ and &7 as inde-
pendent measurements, and in doing so made a mis-
take that unfortunately has been much too common
in selenodetic investigations.

Schemes of the second class are very convenient
if the investigator applies the method of least squares
in a mechanical way and ignores the correlations
between the pseudo-observations. However, if these
correlations are taken into account, and the least
squares techniques are made rigorous, these schemes
lose their advantages and become extremely labori-
ous. This point is made clear below.

The method proposed in this paper belongs to
the first class. However, since the use of pseudo-
observations is so widespread, it seems appropriate
to sketch the correct method of applying the method
of least squares to correlated data. It is important
that the investigator determine whether his obser-
vation equations are stated in terms of independent
measurements, or in terms of pseudo-observations
that are transforms of these.

2. The Principle of Least Squares for
Correlated Observations

The following notation is used:*

x =column matrix of unknown parameters
X1, X2, . . . Xy to be determined from in-
direct measures;

=column matrix of measured quantities
ll, 12, e Im;

A —rectangular matrix of coefficients in the
observation equations. A has m rows
and n columns.

v = column matrix of residuals v;, v, .

Vs

P = diagonal weight matrix with the weights
D1, D2, ...Pm as the elements of the
leading diagonal. All other elements of
P are zero.

Other notation will be introduced as required, but
boldface lowercase letters will always represent col-
umn matrices.

*Matrix notation is used for compactness of exposition.

When the observations are independent and the
errors are normally distributed, the most probable
values of the unknowns follow from the minimization
of the diagonal quadratic form:

oTPyv = 3pv? 2.1

where oT is the transpose of v. When applied to the
indirect observations

Ax =1, (2.2)
this minimization leads to the normal equations
ATPAx — ATPI, (2.3)

which uniquely determine the most probable value
of the unknown parameters x,, Xz, . . . X,. The vari-
ance of an observation of unit weight is estimated
from

o?=3pv?/(m—n). 2.4

The above results are well known, but evidently
it is not so well known that they are valid only when
there is no correlation between the observed quanti-
tiesly, s, . .. In.

The discussion of correlation given here is re-
stricted to algebraic correlation — that is, correlation
generated by transformation of the variables. Let 7,,
T2, . . . Ty TEpresent a set of observations, and let ¢y,
represent the covariance between 7; and 7. Then the
entire set of variances and covariances is represented
by the covariance matrix:

C11,€C12, . . . Cin
CTT: C21,C22y . . . C2q ). (2.5)
Cn15Cn2y « -+ « Cnn

This is square and symmetric, and its diagonal ele-
ments represent the variances. For independent vari-
ables the off-diagonal elements are zero.

Now let a second set (yy, ¥, . . . ¥m) be derived
from the 7; by the transformation

»w=fi(r, 7, ... Tn) i=12,...m,(2.6)

and write

—
fik - an-’

so that we have the matrix relation
dy = Fdr,

where f,, is the typical element of the matrix F. Then,
it may be shown that the covariance matrix for the
yiis
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In general, even when the set (7, 72, . . . T4) is corre-
lation-free, the set (y;, Yo, ... ¥Ym) is not. In other
words, transformation of an independent set will
generally produce a correlated set.

In adjustment theory, it is usually convenient
to replace the covariance matrix C by the correlation
matrix () where

=L
0=—C, (2.8)

and, as before, o2 is the variance of an observation
of unit weight. The reciprocal of Q is called the gen-
eralized weight matrix G, i.e.,

G=0". (2.9)

The matrix G reduces to P when the measures are
uncorrelated, and indeed G is merely a generalization
of the weight matrix and plays the same role for cor-
related measures that P does for independent mea-
sures.

For correlated measures, the quality to be mini-
mized is the symmetric quadratic form

(2.10)

and for indirect measures this minimization leads
to the normal equations

ATGAx = ATGL. (2.11)

The variance of an observation of unit weight is esti-
mated using

oTGo = 3guvivi,

SgikVivVe
m—n

o= (2.12)
The last three results are obvious generalizations of
(2.1), (2.3), and (2.4). If the pseudo-observations
are derived by applying the matrix F to independent
observations with weight matrix P, then the correla-
tion matrix of the pseudo-observations is clearly

Q=FP'FT7,

and the generalized weight matrix must be computed
as the reciprocal of Q. This inversion is in addition
to that occurring in the solution of the normal equa-
tions, and may be a serious drawback to the use of
pseudo-observations in a particular case.

One other result should be noted. When the
observations are independent, the inverse normal
matrix is also the correlation matrix of the unknown
parameters, i.e.,

Q= (ATPA)™. (2.13)

In the case of correlated observations, the inverse
normal matrix is still the correlation matrix of the

unknown parameters x;, so that in this case (2.13) is
generalized to
Oyx= (ATGA)™ . (2.14)

The above results are all that are required for the
case of indirect observations subject to correlation
of an algebraic character. For a more general dis-
cussion and derivation of the results, the reader is
referred to the works of Tienstra (1956) or Linnik
(1961).

3. Remarks about Published
Computation Schemes

An examination of the computation schemes of
Franz, Pickering, Saunder, and Schrutka-Rechtens-
tamm shows that these are all phrased in terms of
pseudo-observations, and the same is true of the
recently published method of the Aeronautical Chart
and Information Center. Various types of pseudo-
observations are used, but these are all error-corre-
lated. 1t follows that the use of (2.3) and (2.4) is not
valid, although, in fact, these were used; hence, the
values obtained are not least squares values, and
the accuracy of the estimates of the precision is com-
promised.

The scheme proposed by Goudas requires sepa-
rate comment since his final results, equations (30)
and (31), may not be correct. The Goudas equation,

dq=(t+3dp)/ p,

cannot be correct, since the vectors 8q and p are
collinear according to his definitions on page 191 of
his paper, and can only differ by a scalar factor. Ac-
cordingly, his equations (14), (17), and (18) are
wrong. [ have not traced his formulation further since
his entire scheme is cumbersome from the viewpoint
of the programmer.

4. The LPL Method for the Computation of
Selenodetic Coordinates

As noted above, the computation schemes already
published are characterized by a certain indirectness
of approach. Let (E, F, G) be the provisional values
of the solid rectangular coordinates of the seleno-
detic points. These are assumed to be in units of
the moon’s radius. Let (x,, ¥,) be the observed coor-
dinates in the plane of the photograph. These are
assumed to be free of re” .ction. If (x., y.) are the
photographic coordinates computed from the pro-
visional values (E, F, G), then the observation equa-
tions for a single observation on one plate are
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ax ax ox
_'8E+—_‘8F+—'SG-:X0_XC

d
oE oF G } @1
9y 9 N s

in which 8E, 8F, and 8G are the required corrections
to the provisional values. Since close approximations
to E, F, and G can be computed from measures on
one plate, one iteration is sufficient, unless the com-
putations indicate large errors in the controls.

The values E, F, and G are transformed to pho-
tographic coordinates as follows. First, the instan-
taneous coordinates X, Y, and Z are computed from

X —aE+bF +¢G
Y=eE+fF+gGy.
Z = IiE+jF+kG

4.2)

The coefficients of this rotational transformation are
computed from the topocentric librations I’ and &/,

ie, a= cos/,
b= 0,
c=—sinl,
e=—sinl'sinb’,
f= cosb,
g=—coslsinb’,
i= sinlcosb,
j= sinb,
k= coslcosb'.

The corresponding coordinates of the line-of-sight
projection of the point in the plane of the limb are:

X' =X/(1 —Zsins’)}

) 4.3)
Y=Y/(1—-Zsins)

where & is the augmented lunar semidiameter. Since
the photographic coordinates are assumed to be free
of refraction, these are connected to X’ and Y’ by
relations of the type

x=pX'—qY’+d}
y=pY +qX' +h{
Applying (4.4) to the controls, that is, to points

whose selenodetic values are known, the resulting
normals for n such controls are:

4.4

nd+ p3X’' —q3Y =3x
nh+ p3Y’+q3X’ =3y
dsX’'+ hsY’ + p3(X24+ Y3 =3(xX +yY") .
—d3Y’ + h3X’ + q3(X? + Y'?) =3(pX’ —xY")
4.5)

Solving these for the plate constants p, g, d, and A,
then for all points on the plate, (4.4) gives

xcsz’—qY'-i-d}

4.6
Ye=pY'+qX’+h “.9

At this point it may be remarked that, even if the
controls are errorless (which is certainly not true),
the observations on these are not errorless; hence
D, q, d, and h will be error-correlated. For reasons of
tractability, this correlation must be ignored. How-
ever, it should be noted that, in principle, x, and y,
are error-correlated even if this correlation is unim-
portant.

The above scheme appears to be particularly
convenient when (4.2), (4.3), and (4.6) are com-
bined as a single subroutine in the computations, for
then by computing the lattice

(E,F,G),

(E + .001,F,G),
(E,F + .001,G),
(E,F,G + .001),

the formal derivation of the partial derivatives in
(4.1) is avoided. If the corresponding photographic
values are:

(xe, o),
(xe, ye),
(X/, y/)’
(xﬂ) y ﬂ)s
then the partial derivatives are computed as
g%: = (x.— x;)/.001,
a—x= (x;—x.)/.001,
oF
% = (xy—x9/.001,
oG
oy
E= (ye—yc)/.001, etc.

However, for those who prefer the formal expres-
sions, the derivatives are easily found by approxi-
mating (4.3) to

X' =X(1 + Zsinys),
Y =Y + Zsiny),

and then using identities of the type

Ox _ 9x 9X" ox 9V’
8E = 98X’ 9E ' 9Y’ OE’

etc.

These lead to the computing scheme;
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S= 14+ Zsiny, 4.7
a=aS+ iXsins
b'=>bS+ jXsing
=cS+kXsins

¢ =eS+ i¥sins|(’ (4.8)
= fS+ jYsins
g = gS+ kY sins’

x_

aE—P q

ox

— = pb — 4.
°F pb’—qf'}, 4.9)
ox

= —pc -

3G =P qg

9y _

aE—qa’-l-pe’

ay

—=gqb’ . 4.1
oF qb’ + pf’ (4.10)
a __ ,

3G — € + pg’

Each point observed on each plate gives two
observation equations leading to 3 X 3 normals for
each point. If the precision of the absolute altitude
is to be estimated, it is advisable to compute the
reciprocal normal matrix for each point.

If the corrections 8E, 8F, or 8G are appreciable
for any of the controls, it may be advisable to recom-
pute the plate constants p, q, d, and h with the cor-
rected values. In any case, the residuals of the obser-
vation equations (4.1) are likely to reveal at least
one control for which the measures are discordant,
so that a second solution for the plate constants is
almost certainly necessary.

5. Estimates of Precision

The precision of the measures can be estimated
in a formal way; but even with a dozen or so photo-
graphs the sample is still rather small, and it is diffi-
cult to distinguish real variations in precision from
statistical fluctuations. The precisions of x and y may
be quite different on the same plate; and moreover,
the mean precision of x and y will vary for the same
point from plate to plate, depending on phase and
seeing. A complete analysis of variance for the meas-
ures should therefore take into account three sources
of variance: (i) the point, (ii) the plate, and (iii)
the phase.

Furthermore, it seems unlikely that the x and y
errors are entirely uncorrelated, particularly in limb

regions where the craters appear as elongated
ellipses. When these remarks are borne in mind, it
will be seen that any conclusions about precision
must be regarded with some caution. However, for
the purposes of making some kind of estimate of the
precision of the measures, the selenodetic coordi-
nates, and the absolute altitudes, the following analy-
sis is provided.

Let it be assumed that the measures x and y are
of the same variance and are pairwise independent.
Let the elements of the inverse normal matrix for
one point be, in the usual abbreviated form,

rva, e, na,
rao, Tag,

rss.
The variance of the measures is computed from
02 =3v%/(n-3), 5.1

where n is the number of observation equations and
v is a typical residual. The standard errors of the
selenodetic coordinates of the point are estimated

from
O — 0'\/"11
Op= 0'\/"22 . (5.2)
Og= 0'\/ T'sg
The covariances are
Cer = 207,
Cpg = 3072,
Cpg = 7230'2.
The absolute altitude 4 is computed from
h=\/(E2+F*+G»—1, (5.3)
whence
dh ~ EdE + FdF + GdG. (5.4)

Applying (2.7), the variance of the absolute altitude
comes to

0'»2: 0'2(52711+F2r22 +Gzr33
+2EF"12 + 2EG’13 +2FGI'23). (55)

6. Dispersion in Selenodetic Coordinates as a
Function of Position on the Disk

The dispersion in the selenodetic coordinates
may vary as a function of position on the lunar sur-
face for two reasons: (i) for reasons of a geometric
nature such that even when the measures are made
with uniform precision over the entire disk, points
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in some positions are nevertheless determined with
more precision than points in other positions; (ii)
because of a gradual shift in the nature of the mea-
sured point from center of face to limb, the usual
assumption being that as the limb is approached the
measures are restricted to larger and larger craters
with a consequent decrease in precision.

It will now be shown that when the measures are
made with uniform precision over the entire disk,
then the selenodetic coordinates also are determined
with uniform precision, so that assumption (i) is not
true.

To simplify the problem, one should note the
very close relations between the X and Y of this
paper and the photographic coordinates x and y. For
the purposes of a first-order theory, it may be as-
sumed that the transformation (4.4) is errorless.
Then, since this transformation is merely an orthog-
onal transformation compounded with a change of
origin and scale, the assumption that x and y are
independent and of the same variance implies that
X’ and Y’ are also independent with the same vari-
ance. Thus, since these do not differ much from X
and Y, it is valid to treat X and Y as the independent
observed quantities and to assume that they have the
same variance. Let this variance be u2

The observation equations for a single point can
now be simplified to

aE + bF +cG=X0—Xc}

. (6.1)
eE+fF +gG=Y,—Y,.
The normal matrix, in abbreviated form is

S(a?+e?), 3(ab+ ef),
(b + 1%,

S(ac + eg),
3(bc + fg),
S(c? + g?).

(6.2)

Without going any further it may be noted that the
elements of this matrix do not contain the selenodetic
positions, and hence the elements of the inverse
normal matrix are also independent of the position
of the point. But the diagonal elements of the inverse
matrix are also the variances of the selenodetic coor-
dinates (E, F, G) expressed in units of the variance
of an observation of unit weight of X or Y.

Hence the result: when the observations are
made with uniform precision over the disk, then the
dispersion in the selenodetic coordinates (E, F, G) is
represented by an error-ellipsoid whose dimensions
are independent of position on the disk.

The analysis may be carried a stage further by
noting that

ARTHUR

a+ e+ 2=1,
B+ +g2=1,
c+ g2+k=1,
ab + ef‘l' ii=0,
ac+eg+ ik=0,
bc+ fg+ jk=0.

Using these, one may write the normal matrix (for
m plates)

m— 32, — 3ij, — Stk
m— 32, — Sjk
m — 3k2,

The summations are over all plates used to determine
the point. Expanding /, j, and & in terms of the topo-
centric librations / and b’ and dropping the primes
for convenience, we have, after approximating the
sines to the angles and the cosines to the second
order in the angles,

m — 3B, — 3b, — 3,
m— 3b?, — b,
(P + bY.

In this all terms of the third order and higher have
been omitted. Assume now that the set of measured
plates is well balanced in librations, so that

3l=0, 3b=0.
Then the normal matrix reduces to
m — 3, — 3ib, 0,
m— 3b?, 0,
S(B + b?).

The determinant of this matrix is
A =3B+ b®) [(m— 3P) (m — 3b*) — (3Ib)?].

Now at their maxima / and b are about 0.2 so this
determinant may be approximated to

A= m?3(P+b%). (6.3)

Applying Cramer’s rule, the diagonal elements of
the inverse normal matrix compute to
(m — 3b%) 3(I2 + b?)
Y B
(m—3P)3(P + b
wo — = 1
fex m3(P + b?) /m

_ (m—3P)(m—3b?
BT mrs(B+b?)

~ 1/3(B + b?).
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Hence, the standard errors of the selenodetic coordi-
nates are

g =p/\VIE+ b
where u is the standard error of X and Y in a single

determination, while ! and b are the topocentric li-
brations. For each plate,

B+ b% < 0.08,

or=p/\/m }

so that ogl/ogt=0g/o = 12.

That is, the standard error of the earthward-directed
coordinate G is at least 3.5 times greater than the
standard error of either E or F.

Thus, with the assumptions made above (con-
cerning homogeneity in the measures), the precision
of the absolute altitudes near the limb is at least 3.5
times better than in the area at the center of the disk.

All the above depends on the assumption that
the measures are made with uniform precision,
whereas some writers have assumed that this pre-
cision falls off toward the limb. This assumption, in
turn, depends on two others, which are (i) that the
difficulities of measuring small craters increase with
distance from the center of face, and (ii) that the
positions of large craters are determined with less
precision. One of these questions can be settled by
an examination of existing selenodetic positions. The
150 points of Franz (and therefore of Schrutka-
Rechtenstamm) are not very useful for this enquiry
because the Lick photographs measured by the
former were quite lacking in resolution. Also, Franz
selected points that are unsuitable for selenodetic
purposes. The numerous points used by Baldwin
would constitute a much better basis, but, unfor-
tunately, his results are printed in a form that does
not permit a ready correlation between position and
diameter. The AMS points must also be rejected
because a relatively large percentage of these is, in
my opinion, unsuitable for selenodetic purposes. The
only large body of data suitable for analysis is the
catalog of Saunder (1910). The entries in this have
been plotted to give a regression of diameter on {,
where { is the third standard direction-cosine. The
lower edge of this regression shows virtually no slope
between { = +1.0 and { = +0.3, which implies that
from the center of face to 70° from the center of face,
there are no particular difficulties in measuring small
distinct craters. However, the analysis also shows
that as we leave the central regions, the mean crater
diameter increases. Figure 2 shows both the mean

diameter of the measured craters and the mode, that
is, the most commonly occurring diameter for a given
value of {.

It must be admitted then that Saunder’s results
show that he tended to measure larger and larger
objects as he went from center of face to limb, the
overall increase in the mean being about 100 per-
cent. It does not follow, however, that the measures
of the larger craters are notably less accurate than
those for small craters.

A more important factor perhaps in phase photo-
graphs is the difficulty of identifying the centers of
craters in the equatorial areas near the east and west
limbs, since the lighting conditions do not favor the
precise delineation of the north and south ends of the
craters in these areas.

The topic of the dispersion in selenodetic coor-
dinates as a function of position was discussed by
Pickering (1903 ) who concluded that absolute lunar
altitudes are best determined in the central regions
of the disk. This view was contradicted by Saunder
(1905). Less definite opinions were held by Hop-
mann (1963) and Baldwin (1963). More recently
Goudas has reached the same conclusion as Picker-
ing. The above analysis shows that Saunder’s posi-
tion was correct and the others wrong. Even if we
allow a decrease by a factor of 2 in the precision of
the measures from center to limb, altitudes of points
in the limb regions are still better determined than
those near the center of face.
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