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S a technique for dealing with measurements on
photographs, photogrammetry is distinguished
by its emphasis on stereoscopic measurement and by
its insistence on projection of the photographs as
cones of perspective rays. In most photogrammetric
operations the object is the construction of a three-
dimensional model by intersections of these rays.
The importance of stereoscopic measurement to
photogrammetrists arises from the principal applica-
tion of the techniques, namely, the plotting of con-
toured maps from aerial photographs. The main
measuring difficulty is then to ensure that the same
point is measured on the various photographs, even
when this point lies in terrain which is devoid of all
well-defined marks. So long as the photographs
contain the vague low-contrast background pattern
known as stereoscopic texture, this difficulty is sur-
mounted by stereoscopic methods of measurement.
It does not follow that stereoscopy has the same
importance for selenodetic work. Indeed, slight dif-
ferences of phase, tone, and resolving power may
cause the stereoscopic method to break down. In
any case, in selenodetic work it is always possible to
select from the numerous well-defined craterlets and
spots which are present on the Moon’s surface, so
that stereoscopy is not needed. The other aspects of
photogrammetric practice are not unimportant. In
the construction of the model by intersecting per-
spective rays it is a basic principle in photogram-
metry to avoid all reference to data external to the
photographs. Thus, in principle at least, it is possi-
ble to survey the lunar surface in three dimensions
without reference to the libration theory, to the
orbital theory, or indeed to anything other than the
measures of the photographs themselves.
In order to do this, however, it is essential to
have a precise knowledge of the so-called inner ori-
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entation of the photograph. This is merely the set
of data by which the photograph is converted into
the associated bundle of perspective rays. In the case
of the long-focus astronomical refractor, with its
negligible distortions of the image, the inner orien-
tation is defined by the effective focal length and the
plate coordinates of the intersection of the optical
axis with the focal plane. Again, the narrowness of
the field reduces the need for accuracy in the posi-
tion of this intersection, but the focal length remains
important.

Generally speaking the focal lengths of the
largest refractors are not known with precision. Our
photographic program with the 40-in. refractor of
the Yerkes Observatory therefore includes photog-
raphy of the Pleiades at widely separated tempera-
tures. We hope to establish the focal length as a
function of temperature with sufficient accuracy to
employ photogrammetric principles to selenodetic
problems.

The simplest of the two major selenodetic prob-
lems is the determination of the Moon’s geometrical
figure and this must be based on coordination in
three dimensions of a fairly large number of sur-
face points. All attacks on this problem, by Franz,
Saunder, Weimer, and Schrutka-Rechtenstamm,
have been by way of the libration theory and are
therefore not photogrammetric. To be sure, Saunder
attempted to apply photogrammetric principles and
to derive coordinates from the photographs alone,
but his attempt failed. The reasons for this failure
will be brought out in what follows.

The analytical formulation for the coordination
of the lunar surface from the photographic measure-
ments alone is simple enough. The important step
is to realize that such an approach is possible. One
such formulation is outlined here. Its only merits
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are directness and simplicity. The analysis is most
easily outlined in terms of 3-vectors and dyadics.
Letr = (x, y, z) be the position vector running from
the effective position of the lens to the image of a
point on the lunar surface. Then z is the effective
focal length of the telescope or camera. The lunar
surface points are coordinated in the system (X, Y, Z)
which is specified later. In this system let
p= (X, Y, Z) be the position vector of a surface
point and let ¢ = (E, F, G) be the position vector
of the camera station. Then the vector running from
the camera station to the surface point is p — q when
resolved in the system (X, Y, Z), and is © - (p-q)
when resolved in the photographic system, © being
an appropriate rotation dyadic.

Now in a correct solution this vector @ - (p — q)
and the photographic vector r must have the same
direction, so our observation equation is:

rX0®-(p-q)=0.-

This is non-linear in the unknowns ©, p, q and is
replaced by the corresponding first order form for
the corrections, i.e.,

rxXoé[@: - (p-q)l+rX0:(p-q)=0.

For convenience we represent the increment in
O -(p—q)duetod®asw X O - (p - q), where
w is a small rotation vector. Subsequently we report
the corrections to ©® from

0 =wX0.
With this substitution the equation becomes
rX[wX©-(p-q)+0-(3p-8q)]+rX 8- (p-q)=0.

The expansion of this into its scalar equivalents is
simple though laborious and need not be described
here. Two points should be noted. First, the above
is an assertion of the identity of two directions and
is therefore equivalent to two, not three, scalar reso-
lutes. For obvious reasons the x — and y — resolutes
are chosen. Secondly, it will be found that the abso-
lute values can be worked into the forms

X —uz, y+ vz

where u and v do not depend on x or y. Thus, the
only error-correlation present is that arising from
the errors of focal length. In a first essay these can
be ignored and the observations regarded as
independent.

Thus, if there are m plates and the same n points
are observed on each, then there are 2mn observa-
tion equations. Each plate involves six unknowns

and each point three unknowns, so there are
6m + 3n unknowns altogether. However, seven of
these unknowns are at our disposal to relate the
coordinate system (X, Y, Z) to the model. This is
most conveniently done by assigning arbitrary com-
plete sets (X, Y, Z) to two of the observed points
and by assigning one of X, Y or Z for a third point.
In the selenodetic application we can make our
coordinate system (X, Y, Z) approximate to the
usual selenodetic system by estimating Saunder’s
(&, m, {) for these points and using these as the
assigned values. We now have 6m + 3n—7 un-
knowns, since the corrections X, 8Y, 6Z for the
assigned values drop out of the equations. For a
non-trivial solution the necessary condition is

2mn=6m + 3n-1.
This contains the possibility

m=2, n=23,,

that is, two plates with the same five points observed
on each. Indeed, this case corresponds to Fourcade’s
correspondence theorem, which is well known to
photogrammetrists and forms the basis of almost all
model-formation in practical photogrammetric
procedures.

It is important to realize that it has no practical
validity for lunar photographs, a situation which
arises from the ultra-narrow fields characteristic of
lunar photographs. Photogrammetrists are accus-
tomed to working with cameras with field of 60°
to 90°, whereas with lunar photographs we are
restricted to fields of 30’. This difference of degree
is so extreme that it amounts to a difference in kind.
The lunar photograph is virtually an orthographic
projection and it can soon be shown that the solu-
tion for m = 2 is indeterminate for orthographic
pictures.

Imagine the two orthographic pictures placed so
that the rays are in correspondence, that is, so that
each ray from the first picture meets the ray from
the corresponding image in the second. Each picture
is equivalent to a pencil or beam which is parallel in
itself. Now if either pencil is rotated about an axis
perpendicular to both pencils, then each ray slides
on the corresponding ray and the correspondence
is not broken. In other words, the dihedral angle
between the picture-planes is indeterminate and the
solution fails.

This point was reached by Saunder but he failed
to realize that a solution is possible if more than two
orthographic pictures are used simultaneously. Con-
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sidering generally several orthographic pictures at
arbitrary and different scales, let these be placed so
that the images of one selected point coincide. The
pictures are still free to rotate and the unknown ele-
ments of mutual orientation are one rotation in the
plane of each picture and the dihedral angles between
their planes. Taking axes in each plane through the
common point we can always write for one pair of
pictures i, k,

i (yicos 0y —x;5in 0;1.) = . (V1,08 Bri—x1.8in 0),

where u;, py are appropriate scale factors while 6;,
f,: are associated rotations in the two planes. The
equation merely asserts that if the projections are at
natural scale, then a y-datum can be chosen in each
such that the y’s of all corresponding images are
equal. It is this relation which gives orthographic
pictures their peculiar character. In principle the
above can be applied to the measured images (x;, y;),
(xx, yr) and solved for puy, u; and 0y, 65,. The plates
can be paired in ¥2 m (m—1) ways so there are
Y2 m (m—1) (n-1) equations. Assigning one of
the w’s there are (m — 1) unknowns of this sort and
m (m— 1) unknown 6’s. Hence for a solution

Ym(m-1)(n=-1)=(m+1)(m-1)
or,
Vam(h—-1)=m+ 1.

The dihedral angles have yet to be determined. How-
ever, the angle on the plane / between its intersections
with the planes j, k, is:

ap.jx, = 0 — Oy,

so these apex-angles ‘are determined with the 6.
But if the planes are associated in threes, the apex
angles also determine the dihedral angles between
the planes, since there is nothing more here than the
determination of the angles of a spherical triangle
when the sides are given.

Hence for a solution we must have m = 3, since
the triangles cannot exist when m < 3. Putting
m = 3 in the previous inequality we then have

3n > 11.

That is, the relative orientation of orthographic pic-
tures is determinate when the images of the same
four points can be identified on three pictures.

This is undoubtedly the relevant minimum con-
dition for lunar photographs. The relations between
the x and y’s in the rigorous orthographic case warn
us that there are considerably fewer independent bits

of information present than may appear at first sight.

The solution is weak, not only because the photo-
graphs approximate to orthographic pictures, but
also because of the limited range of the optical libra-
tion. The rays cross each other very obliquely, so
the intersected positions are not well defined. The
only way to deal with this, apart from the utmost care
in the photography and measurements, is to increase
the overdetermination to the limits set by the com-
puting equipment.

As yet we cannot estimate how many plates and
points are required to give a useful accuracy, but
about twenty plates are available and intuition sug-
gests 200 points or even more. However, we cannot
really tell until the normal matrix has been inverted
for the first trial calculation. Accuracy at this stage
is quite separate from the problem of how many
points are required to define the selenoid, since once
a satisfactory solution has been achieved, points not
used in the solution can be processed with the original
observation equation

rx0-(p-q)=0;

leading to 3 X 3 normal matrices for each point not
appearing in the solution.

The second major selenodetic problem is the
determination of the Moon’s rotation constants. So
far the heliometer has been used for this, following,
except for minor details, the scheme set out by
Bessel. The heliometer is a difficult instrument to
use and the reductions are complex. In addition,
Bessel’s scheme is theoretically unsatisfactory since
it links the various observations together by a rather
dubious assumption about the smoothed lunar limb.
There is no reason to believe that the limb defines a
unique point in the Moon’s interior, and this hypoth-
esis is ad hoc in character. With modern standards
of accuracy this approach becomes more and more
unsatisfactory.

Now the Moon’s rotation, as well as displacing
the surface markings with respect to the limb, also
displaces them with respect to each other. Thus, the
observation equations can be stated in terms of the
rectangular coordinates of the points in the plane
of the image, without reference to the limb, or at
least in such a manner that the limb plays a purely
secondary role.

Two approaches are possible. The first is to make
use of the spatial coordinates determined as above,
assuming these to be related to the usual selenodetic
system by a general transformation of rectangular
coordinates. In the other approach these coordinates
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are left free and are determined along with the con-
stants of rotation. In vaguest outline, since this
approach has not yet been thought through in detail,
the observation equations may be put in the form

x=F(X,Y,2,X,Y,2,11{),
y= F2(X; Y: Zs Xo; Yo: Zo, I» f)’

where (x,y) are the photographic coordinates re-
duced to the image of the fundamental point as
origin, (X, Y, Z) are the rectangular coordinates
of the surface point in the selenodetic system but
referred to the fundamental point as origin,
(X,, Yo, Z,) are the approximate barycentric coordi-
nates of the fundamental point, and /, f represent the
unknown rotation elements. The coordinates (x, ¥)
are not very sensitive to errors of (X,, Y,, Z,) and
this is just as well since the latter cannot be known
with the highest precision. It will be noticed that this
scheme replaces coordination of the points with
respect to a vague inaccessible origin by coordination
with respect to a definite and observable origin, the
fundamental point.

The measures will be made on photographs taken
with the 40-in. Yerkes refractor, in which star trails
are registered for purposes of orientation. These
have all been taken by Mr. Elliott Moore. Before
starting the evening’s work star maps and catalogs
are examined to ascertain the gap between the Moon

and suitable stars, which must be brighter than the
5th magnitude in order to register a trail. On occa-
sions there are none suitable at the Moon’s declina-
tion within the limits of the field of the instrument
and movement in declination of 2° is permitted to
close the time gap between lunar and stellar expo-
sure. Even so, it is sometimes necessary to wait as
long as 2 hours in order to get the exposure for the
star-trail. During this time the telescope cannot be
moved nor used in any way, since there is consider-
able risk of disturbing the plate. Atmospheric tem-
peratures and pressures are carefully recorded for
those plates in order to calculate the differential
refraction. The slight change in declination, when
present, will be taken into account when computing
the orientation of the star-trail. Numerous points on
each trail will be measured to establish its orienta-
tion with respect to the axes of the measures. The
points to be measured fall into two groups, one group
near the center of the disk and another group scat-
tered around the limb regions, but not on the limb
itself.

Only photographic methods are adequate for this
approach and Koziel’s doubts about the accuracy of
photographs are rejected here. After all, 50 years
ago S. A. Saunder obtained relative accuracies of
about 0-1 sec in his crater positions and surely we
can do better today.



